Error in open.connection(x, "rb") : HTTP error 500. Warning in .Internal(exists(x, envir, mode, inherits)) : closing unused connection 3 (https://www.onepetro.org/search?q="machine+learning"AND"economics"AND"GPR"&peer_reviewed=&published_between=&from_year=&to_year=&dc_type=conference-paper&start=-1000&rows=1000)
major <- c("machine learning") discipline <- c("reservoir", "production", "surface facilities", "metering", "logging", "pvt", "completion", "intervention", "workover", "drilling", "geology", "petrophysics", "geophysics", "seismic", "economics") ml_technique.1 <- c("random forest", "GPR", " Gaussian Process Regression", "PCA", "principal component analysis", "boosting", "discriminant analysis") by.ml_technique.1 <- join_keywords(major, discipline, ml_technique.1, get_papers = TRUE, sleep = 3) by.ml_technique.1
library(petro.One) PROJHOME <- rprojroot::find_rstudio_root_file() major <- c("machine learning") discipline <- c("reservoir", "production", "surface facilities", "metering", "logging", "pvt", "completion", "intervention", "workover", "drilling", "geology", "petrophysics", "geophysics", "seismic", "economics") ml_technique <- c("boosting", "discriminant analysis", "kernel approximation", "genetic algorithm", "SVM", "Support Vector Machine", "nearest neighbor", "k-nearest neighbor", "deep learning", "convolutional network", "convolutional neural", "kernel density estimation", "naive bayes", "logistic regression", "neural network", "neural nets", "decision tree", "Gradient Boosting Tree", "linear regression", "random forest", "GPR", " Gaussian Process Regression", "PCA", "principal component analysis", "SVD", "Singular Value Decomposition", "c-means", "fuzzy c-means", "k-means", "gaussian mixture", "gaussian mixture model", "reinforcement learning", "hierarchical", "hierarchical clustering", "fuzzy logic", "hidden markov", "SVR", "Support Vector Regression" ) by.ml_technique <- join_keywords(major, discipline, ml_technique, get_papers = TRUE, sleep = 3) by.ml_technique save(by.ml_technique, file = file.path(PROJHOME, "data", "ml_technique.rda")) # 8609 papers
# only the papers dataframe write.csv(by.ml_technique.4$papers, file = "ml_papers_4.csv") # just in case
ml.keywords.4 <- by.ml_technique.4$keywords ml.papers.4 <- by.ml_technique.4$papers
library(petro.One) top <- c("machine learning") discipline <- c("reservoir", "production", "surface facilities", "metering", "logging", "completion", "intervention", "workover", "drilling", "geology", "petrophysics", "geophysics", "seismic", "economics") by.discipline <- join_keywords(top, discipline, get_papers = TRUE, sleep = 3) by.discipline
by.discipline.ml <- by.discipline by.discipline.ml$uid <-
library(petro.One) top <- c("neural network") discipline <- c("reservoir", "production", "surface facilities", "metering", "logging", "completion", "intervention", "workover", "drilling", "geology", "petrophysics", "geophysics", "seismic", "economics") by.discipline.nn <- join_keywords(top, discipline, get_papers = FALSE, sleep = 3) by.discipline.nn
# data driven is the same as data-driven library(petro.One) top <- c("data driven") discipline <- c("reservoir", "production", "surface facilities", "metering", "logging", "completion", "intervention", "workover", "drilling", "geology", "petrophysics", "geophysics", "seismic", "economics") by.discipline.dd <- join_keywords(top, discipline, get_papers = FALSE, sleep = 3) by.discipline.dd
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.