library(petro.One) major <- c("machine learning") minor <- c("reservoir", "production", "logging", "completion", "intervention", "drilling", "geology", "seismic", "petrophysics", "geophysics", "economics") lesser <- c("data", "algorithm") prod.df <- join_keywords(major, minor, lesser, get_papers = TRUE, sleep = 4) prod.df
library(ggplot2) library(dplyr) keywords <- prod.df$keywords # get the keywords from the list # data only keywords %>% filter(Var3 == "data") %>% ggplot(aes(x=reorder(Var2, paper_count), y=paper_count)) + coord_flip()+ geom_bar(stat="identity")
# algorithm only keywords %>% filter(Var3 == "algorithm") %>% ggplot(aes(x=reorder(Var2, paper_count), y=paper_count)) + coord_flip()+ geom_bar(stat="identity")
library(magrittr) library(dplyr) keywords.1 <- prod.df %>% # extract2("keywords") %>% `[[`("keywords") %>% filter(Var3 == "data") keywords.1 %>% ggplot(aes(x=reorder(Var2, paper_count), y=paper_count)) + coord_flip()+ geom_bar(stat="identity")
keywords.2 <- prod.df %>% # extract2("keywords") %>% `[[`("keywords") %>% filter(Var3 == "algorithm") keywords.2 %>% ggplot(aes(x=reorder(Var2, paper_count), y=paper_count)) + coord_flip()+ geom_bar(stat="identity")
replace well construction
1 by drilling
# replace `well construction`1 by `drilling` keywords.2 <- prod.df %>% # extract2("keywords") %>% `[[`("keywords") %>% filter(Var3 == "algorithm") %>% mutate(paper_count = ifelse(Var2 == "well construction",, paper_count)) # mutate(Var2 = ifelse(Var2 == "well construction", "drilling", Var2)) keywords.2 %>% ggplot(aes(x = reorder(Var2, paper_count), y=paper_count)) + coord_flip()+ geom_bar(stat="identity")
library(petro.One) major <- c("machine learning") discipline <- c("reservoir", "production", "logging", "completion", "intervention", "drilling", "geology", "seismic", "petrophysics", "geophysics", "economics") learning <- c("supervised learning", "unsupervised learning") by.learning <- join_keywords(major, discipline, learning, get_papers = TRUE, sleep = 3)
library(petro.One) major <- c("machine learning") discipline <- c("reservoir", "production", "logging", "completion", "intervention", "drilling", "geology", "seismic", "petrophysics", "geophysics", "economics") learning <- c("supervised learning", "unsupervised learning") tech_class <- c("clustering", "classification", "regression") by.learning <- join_keywords(major, discipline, learning, tech_class, get_papers = TRUE, sleep = 3)
library(petro.One) major <- c("machine learning") minor <- c("reservoir", "production", "logging", "completion", "intervention", "drilling", "geology", "seismic", "petrophysics", "geophysics", "economics") ml_technique <- c("SVM", "Support Vector Machine", "Genetic algorithm", "neural network", "fuzzy logic", "decision tree", "k-means", "boosting", "deep learning", "PCA", "principal component analysis", "logistic regression", "kernel density estimation", "nearest neighbors", "reinforcement learning") by.ml_technique <- join_keywords(major, minor, ml_technique, get_papers = TRUE, sleep = 3) by.ml_technique
Replace the long-SVM by SVM
var3.str.1 <- "SVM" var3.str.2 <- "Support Vector Machine" not.svm.only <- by.ml_technique %>% `[[`("keywords") %>% select(Var1, Var2, Var3, paper_count) %>% filter(Var3 != var3.str.1 & Var3 != var3.str.2) %>% as.data.frame() %>% print
var3.str.1 <- "SVM" var3.str.2 <- "Support Vector Machine" svm.only <- by.ml_technique %>% `[[`("keywords") %>% select(Var1, Var2, Var3, paper_count) %>% filter(Var3 == var3.str.1 | Var3 == var3.str.2) %>% mutate(Var3 = ifelse(Var3 == var3.str.2, var3.str.1, Var3)) %>% group_by(Var1, Var2, Var3) %>% summarize(paper_count = sum(paper_count)) %>% as.data.frame() %>% print
# binding both dataframes keywords.new <- rbind(not.svm.only, svm.only) keywords.new
var3.str.1 <- "PCA" var3.str.2 <- "principal component analysis" not.pca.only <- keywords.new %>% select(Var1, Var2, Var3, paper_count) %>% filter(Var3 != var3.str.1 & Var3 != var3.str.2) %>% as.data.frame() %>% print
var3.str.1 <- "PCA" var3.str.2 <- "principal component analysis" pca.only <- keywords.new %>% select(Var1, Var2, Var3, paper_count) %>% filter(Var3 == var3.str.1 | Var3 == var3.str.2) %>% mutate(Var3 = ifelse(Var3 == var3.str.2, var3.str.1, Var3)) %>% group_by(Var1, Var2, Var3) %>% summarize(paper_count = sum(paper_count)) %>% as.data.frame() %>% print
keywords.new.2 <- rbind(not.pca.only, pca.only) keywords.new.2
library(petro.One) major <- c("machine learning") minor <- c("reservoir", "production", "logging", "completion", "intervention", "workover", "drilling", "geology", "seismic", "petrophysics", "geophysics", "economics", "surface facilities") ml_technique.2 <- c("SVM", "Support Vector Machine", "discriminant analysis", "logistic regression", "naive bayes", "nearest neighbor", "linear regression", "SVR", "Support Vector Regressor", "GPR", " Gaussian Processes Regression", "decision tree", "neural network", "neural nets", "k-means", "c-means", "hierarchical", "gaussian mixture", "hidden markov", "deep learning", "convolutional network", "Boltzman machine", "Genetic algorithm", "fuzzy logic", "boosting", "PCA", "principal component analysis", "kernel density estimation", "reinforcement learning") by.ml_technique.2 <- join_keywords(major, minor, ml_technique.2, get_papers = TRUE, sleep = 3) by.ml_technique.2 save(by.ml_technique.2, file = "ml_technique_2.rda") # just in case
# load(file = "ml_technique_2.rda") load("R:/github-oilgains/petro.One/ml_technique_2.rda")
by.ml_technique.2$keywords
library(dplyr) var3.str.1 <- "SVM" var3.str.2 <- "Support Vector Machine" not.svm.only <- by.ml_technique.2 %>% `[[`("keywords") %>% select(Var1, Var2, Var3, paper_count) %>% filter(Var3 != var3.str.1 & Var3 != var3.str.2) %>% as.data.frame() %>% print var3.str.1 <- "SVM" var3.str.2 <- "Support Vector Machine" svm.only <- by.ml_technique.2 %>% `[[`("keywords") %>% select(Var1, Var2, Var3, paper_count) %>% filter(Var3 == var3.str.1 | Var3 == var3.str.2) %>% mutate(Var3 = ifelse(Var3 == var3.str.2, var3.str.1, Var3)) %>% group_by(Var1, Var2, Var3) %>% summarize(paper_count = sum(paper_count)) %>% as.data.frame() %>% print # binding both dataframes keywords.new <- rbind(not.svm.only, svm.only) keywords.new
var3.str.1 <- "PCA" var3.str.2 <- "principal component analysis" not.pca.only <- keywords.new %>% select(Var1, Var2, Var3, paper_count) %>% filter(Var3 != var3.str.1 & Var3 != var3.str.2) %>% as.data.frame() %>% print pca.only <- keywords.new %>% select(Var1, Var2, Var3, paper_count) %>% filter(Var3 == var3.str.1 | Var3 == var3.str.2) %>% mutate(Var3 = ifelse(Var3 == var3.str.2, var3.str.1, Var3)) %>% group_by(Var1, Var2, Var3) %>% summarize(paper_count = sum(paper_count)) %>% as.data.frame() %>% print keywords.new.2 <- rbind(not.pca.only, pca.only) keywords.new.2
var3.str.1 <- "neural network" var3.str.2 <- "neural nets" not.nnet.only <- keywords.new.2 %>% select(Var1, Var2, Var3, paper_count) %>% filter(Var3 != var3.str.1 & Var3 != var3.str.2) %>% as.data.frame() %>% print nnet.only <- keywords.new.2 %>% select(Var1, Var2, Var3, paper_count) %>% filter(Var3 == var3.str.1 | Var3 == var3.str.2) %>% mutate(Var3 = ifelse(Var3 == var3.str.2, var3.str.1, Var3)) %>% group_by(Var1, Var2, Var3) %>% summarize(paper_count = sum(paper_count)) %>% as.data.frame() %>% print keywords.new.3 <- rbind(not.nnet.only, nnet.only) keywords.new.3
library(petro.One) major <- c("machine learning") minor <- c("reservoir", "production", "logging", "completion", "intervention", "workover", "drilling", "geology", "seismic", "petrophysics", "geophysics", "economics", "surface facilities") ml_technique.3 <- c("SVR", "Support Vector Regression", "GPR", " Gaussian Process Regression" ) by.ml_technique.3 <- join_keywords(major, minor, ml_technique.3, get_papers = TRUE, sleep = 3) by.ml_technique.3 # save(by.ml_technique.2, file = "ml_technique_2.rda") # just in case
library(petro.One) major <- c("machine learning") minor <- c("reservoir", "production", "surface facilities", "metering", "logging", "completion", "intervention", "workover", "drilling", "geology", "petrophysics", "geophysics", "seismic", "economics") ml_technique.4 <- c("boosting", "discriminant analysis", "kernel approximation", "genetic algorithm", "SVM", "Support Vector Machine", "nearest neighbor", "k-nearest neighbor", "deep learning", "convolutional network", "convolutional neural", "kernel density estimation", "naive bayes", "logistic regression", "neural network", "neural nets", "decision tree", "Gradient Boosting Tree", "linear regression", "random forest", "GPR", " Gaussian Process Regression", "PCA", "principal component analysis", "SVD", "Singular Value Decomposition", "c-means", "fuzzy c-means", "k-means", "gaussian mixture", "gaussian mixture model", "reinforcement learning", "hierarchical", "hierarchical clustering", "fuzzy logic", "hidden markov", "SVR", "Support Vector Regression" ) by.ml_technique.4 <- join_keywords(major, minor, ml_technique.4, get_papers = TRUE, sleep = 3) by.ml_technique.4 save(by.ml_technique.4, file = "ml_technique_4.rda") # just in case
write.csv(by.ml_technique.4, file = "ml_technique_4.csv") # just in case
ml.keywords.4 <- by.ml_technique.4$keywords ml.papers.4 <- by.ml_technique.4$papers
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.