View source: R/tidy_miceRanger.R
tidyMice | R Documentation |
The function for tidy miceRanger imputation results
tidyMice(X)
X |
data |
This function is used to tidy miceRanger imputation results
Shoji F. Nakayama
## Not run:
require(tidyverse)
require(miceRanger)
require(doParallel)
set.seed(9973)
# Load data
data(iris)
# Ampute the data. iris contains no missing values by default.
ampIris <- amputeData(iris, perc = 0.25)
head(ampIris, 10)
summary(ampIris)
# Set up back ends.
cl <- makeCluster(2)
registerDoParallel(cl)
# Perform mice
miceObjPar <- miceRanger(
ampIris,
m = 6,
parallel = TRUE,
verbose = FALSE
)
stopCluster(cl)
registerDoSEQ()
imp <- completeData(miceObjPar)
imp <- tidyMice(imp)
df.imp <- imp %>% group_by(.id) %>% summarise_at(.vars = names(.)[3:ncol(imp)], .funs = 'mjvote')
df.imp <- df.imp[, -1]
summary(df.imp)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.