DGCPCA: Perform PCA for discrete dataset using Gaussian copula

Description Usage Arguments Value Methods (by class)

View source: R/dgcpca.R

Description

Perform PCA for discrete dataset using Gaussian copula

Usage

1
2
3
4
5
6
7
DGCPCA(x, npc, ...)

## S3 method for class 'DGCFit'
DGCPCA(x, npc = 5, ...)

## Default S3 method:
DGCPCA(x, npc = 5, maps = TRUE, ...)

Arguments

x

A discrete dataset. Assumed to be all numerical-discrete-valued if maps = FALSE.

npc

Number of first PCs needed.

...

Parameters for DGCFit.

maps

Logical or a list of vectors of length ncol(x). If FALSE, x must be a mapped dataset (i.e. all discrete values are numerical). If TRUE, all values will be mapped to discrete values in [0,1] using sort(unique(x[,j])). If a list of vectors of length ncol(x), values will be mapped to discrete values in [0,1] accoording to the provided list. See discrete_mapping.

Value

An object of class DGCPCA with components:

fit

An object of DGCFit. See DGCFit.

npc

Number of first PCs needed.

lambdas

Eigenvalues for the first npc PCs.

rotmat

Rotation matrix.

scores

The first npc surrogate PC scores.

latent_norm

The simulated unobserved multivariate normal random vectors used to generate the surrogate PC scores.

Methods (by class)


fanne-stat/DGCPCA documentation built on Dec. 20, 2021, 7:43 a.m.