knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.align = "center", fig.path = "man/figures/README-" )
flamingos is an open-source toolbox (available in R and in Matlab) for the simultaneous clustering and segmentation of heterogeneous functional data (i.e time-series ore more generally longitudinal data), with original and flexible functional latent variable models, fitted by unsupervised algorithms, including EM algorithms.
Our nice FLaMingos are mainly:
The models and algorithms are developped and written in Matlab by Faicel Chamroukhi, and translated and designed into R packages by Florian Lecocq, Marius Bartcus and Faicel Chamroukhi.
You can install the flamingos package from GitHub with:
# install.packages("devtools") devtools::install_github("fchamroukhi/FLaMingos")
To build vignettes for examples of usage, type the command below instead:
# install.packages("devtools") devtools::install_github("fchamroukhi/FLaMingos", build_opts = c("--no-resave-data", "--no-manual"), build_vignettes = TRUE)
Use the following command to display vignettes:
browseVignettes("flamingos")
library(flamingos)
mixRHLP
data("toydataset") x <- toydataset$x Y <- t(toydataset[,2:ncol(toydataset)]) K <- 3 # Number of clusters R <- 3 # Number of regimes (polynomial regression components) p <- 1 # Degree of the polynomials q <- 1 # Order of the logistic regression (by default 1 for contiguous segmentation) variance_type <- "heteroskedastic" # "heteroskedastic" or "homoskedastic" model n_tries <- 1 max_iter <- 1000 threshold <- 1e-5 verbose <- TRUE verbose_IRLS <- FALSE init_kmeans <- TRUE mixrhlp <- emMixRHLP(X = x, Y = Y, K, R, p, q, variance_type, init_kmeans, n_tries, max_iter, threshold, verbose, verbose_IRLS) mixrhlp$summary() mixrhlp$plot()
mixHMM
data("toydataset") Y <- t(toydataset[,2:ncol(toydataset)]) K <- 3 # Number of clusters R <- 3 # Number of regimes (HMM states) variance_type <- "heteroskedastic" # "heteroskedastic" or "homoskedastic" model ordered_states <- TRUE n_tries <- 1 max_iter <- 1000 init_kmeans <- TRUE threshold <- 1e-6 verbose <- TRUE mixhmm <- emMixHMM(Y = Y, K, R, variance_type, ordered_states, init_kmeans, n_tries, max_iter, threshold, verbose) mixhmm$summary() mixhmm$plot()
mixHMMR
data("toydataset") x <- toydataset$x Y <- t(toydataset[,2:ncol(toydataset)]) K <- 3 # Number of clusters R <- 3 # Number of regimes/states p <- 1 # Degree of the polynomial regression variance_type <- "heteroskedastic" # "heteroskedastic" or "homoskedastic" model ordered_states <- TRUE n_tries <- 1 max_iter <- 1000 init_kmeans <- TRUE threshold <- 1e-6 verbose <- TRUE mixhmmr <- emMixHMMR(X = x, Y = Y, K, R, p, variance_type, ordered_states, init_kmeans, n_tries, max_iter, threshold, verbose) mixhmmr$summary() mixhmmr$plot()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.