#BIC function
LBIC = function(X, Y, wk, eta)
{
# source("Pik.R")
# source("LPi.R")
d = dim(X)[2]
p = d-1
n = dim(X)[1]
K = nrow(wk) + 1
R = max(Y)
pik = Pik(n, K, X, wk)
# beta = as.matrix(betak[-1,]) #remove first row of betak
# if(p==1) beta = t(beta)
w = wk[,-1] #remove first column of wk
DF = 0
for(k in 1:K)
{
for (r in 1:(R-1))
{
for (j in 2:d)
if(eta[k,r,j]!= 0) DF = DF+1
}
}
if(K==2) w = t(as.matrix(w))
for(k in 1:(K-1))
{
for (j in 1:p)
if(w[k,j]!= 0) DF = DF+1
}
S0 = 0
for(i in 1:n)
{
S1 = 0
for(k in 1:K)
{
ETAk = as.matrix(eta[k,,])
if(R==2) ETAk = t(ETAk)
P_eta = Pi(R,X[i,],ETAk)
S1 = S1+pik[i,k]*P_eta[Y[i]]
}
S1 = log(S1)
S0 = S0+S1
}
S0 = S0 - log(n)*DF/2
return (S0)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.