glm_logpost: The conditional and joint log posterior function

Description Usage Arguments Value Author(s)

View source: R/models__glm__glm_logpost.R

Description

Details.

Usage

1
glm_logpost(Y, x, Params, callParam, splineArgs, priorArgs, Params_Transform)

Arguments

Y

NA

x

NA

Params

NA Params$xi: Parmas$K:

callParam

callParam$id: It should be able to obtain conditianl posterior or joint posterior or just likelihood. callParam$subset: If the paramater set is larg, we may only update a subset of them.

splineArgs

"list".

priorArgs

priorArgs$prior_type: priorArgs$n0: priorArgs$S0: priorArgs$mu: priorArgs$M: priorArgs$mu0: priorArgs$Sigma0: priorArgs$ka0: priorArgs$ka.mu0: priorArgs$ka.Sigma0: priorArgs$Sigma.mu0: priorArgs$Sigma.Sigma0:

Params_Transform

NA

ParamsTransArgs

"list"

Value

"scalar".

Author(s)

Feng Li, Department of Statistics, Stockholm University, Sweden.


feng-li/movingknots documentation built on March 30, 2021, 11:58 a.m.