View source: R/dirichlet_params.R
dirichlet_params | R Documentation |
Function to calculate the \alpha
parameters of the Dirichlet distribution
based on the method of moments (MoM) using the mean \mu
and standard
deviation \sigma
of the random variables of interest.
dirichlet_params(p.mean, sigma)
p.mean |
Vector of means of the random variables. |
sigma |
Vector of standard deviation of the random variables (i.e., standar error). |
alpha Alpha parameters of dirichlet distribution
Based on methods of moments. If \mu
is a vector of means and
\sigma
is a vector of standard deviations of the random variables, then
the second moment X_2
is defined by \sigma^2 + \mu^2
. Using the
mean and the second moment, the J
alpha parameters are computed as follows
\alpha_i = \frac{(\mu_1-X_{2_{1}})\mu_i}{X_{2_{1}}-\mu_1^2}
for i = 1, \ldots, J-1
, and
\alpha_J = \frac{(\mu_1-X_{2_{1}})(1-\sum_{i=1}^{J-1}{\mu_i})}{X_{2_{1}}-\mu_1^2}
Fielitz BD, Myers BL. Estimation of parameters in the beta distribution. Dec Sci. 1975;6(1):1–13.
Narayanan A. A note on parameter estimation in the multivariate beta distribution. Comput Math with Appl. 1992;24(10):11–7.
## Not run:
p.mean <- c(0.5, 0.15, 0.35)
p.se <- c(0.035, 0.025, 0.034)
dirichlet_params(p.mean, p.se)
# True values: 100, 30, 70
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.