Description Usage Arguments Value References See Also
View source: R/TMS_Classifier.R
Build a RFC from TMS regression parameters and test its classification performances.
1 | buildPredictor(data, status = 10, vset = NULL, n = 10000, m = 3)
|
data |
A matrix or data.frame containing subjects as rows and TMS parameters as columns. A further column specifying subject diagnosis can be given to validate the classifier. |
status |
Numeric value specifying subject diagnosis (default status = 10). |
vset |
An optional data.frame of the same format of the input data.
This will be used as external validation set. The validation set can
be generated from input data, using |
n |
Number of bootstrap sampled trees of the RFC (default n = 10000). Increasing n improves RFC classification performance, but will sensibly increase computational time. |
m |
Number of random variables for each tree split (default m = 3). The suggested value is the squared root of the total number of variables (the default value is set to 3 since 9 TMS parameter are expected by the default classifier). |
An object of class randomForest
.
An optional object of class performance
is returned, if vset is not NULL.
Liaw A, Wiener M. Classification and Regression by randomForest (2002). R News, 2(3):18-22. https://doi.org/10.1023/A:1010933404324
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.