summary.ZOIPM | R Documentation |
Summarize a ZOIP model mixed.
## S3 method for class 'ZOIPM' summary(object, ...)
object |
An object of class |
... |
other arguments. |
library(ZOIP) N<-2 ni<-10 set.seed(12345) Ciudad <- rep(1:N, each=ni) Total_mora<-rexp(N*ni,rate=1) set.seed(12345) b0i <- rep(rnorm(n=N,sd=0.5), each=ni) set.seed(12345) b1i <- rep(rnorm(n=N,sd=0.4), each=ni) neta <- (-1.13+b0i)+0.33*Total_mora neta2<-(0.33+b1i)+0.14*Total_mora mu <- 1 / (1 + exp(-neta)) sigma <- 1 / (1 + exp(-neta2)) p0 <- 0.05 p1 <- 0.05 mu[mu==1] <- 0.999 mu[mu==0] <- 0.001 sigma[sigma==1] <- 0.999 sigma[sigma==0] <- 0.001 family<-'R-S' set.seed(12345) Y <- rZOIP(n=length(mu), mu = mu, sigma = sigma ,p0=p0,p1=p1,family=family) data_sim<-data.frame(Y,Total_mora,Ciudad) n.points <- 3 pruning <- TRUE formula.mu=Y~Total_mora formula.sigma=~Total_mora formula.p0=~1 formula.p1=~1 formula.random= ~ 1 | Ciudad link=c('logit','logit','identity','identity') optimizer<-'nlminb' mod<-RMM.ZOIP(formula.mu=formula.mu,formula.sigma=formula.sigma,formula.p0=formula.p0, formula.p1=formula.p1,data=data_sim,formula.random=formula.random,link=link, family=family,optimizer=optimizer,n.points=n.points,pruning=pruning) summary(mod)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.