knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE)
# remotes::install_github("fishvice/tidydatras", ref = "e5d9a0a", force = TRUE, 
#                         quiet = TRUE, dependencies = FALSE)
# devtools::install_github("ices-tools-prod/icesDatras", force=TRUE)
library(icesDatras)
library(tidyverse)
library(tidydatras)

# source("../../R/doodle.R")
source("../../R/dr_getdata.R")
source("../../R/dr_getflexdata.R")
source("../../R/dr_getflexoverview.R")
source("../../R/dr_getoverview.R")
source("../../R/dr_settypes.R")
source("../../R/dr_download_all.R")
source("../../R/dr_idunite.R")
source("../../R/dr_idseparate.R")
source("../../R/dr_tidy.R")
source("../../R/dr_calccpue.R")

icesDatras::getFlexFile(survey="FR-CGFS", year=2015, quarter=4)
t <- dr_getflexoverview(surveys=c("NS-IBTS", "FR-CGFS"), years=2000:2022, quarters=c(1,3,4))
hh <- dr_getdata(record="HH", surveys=c("NS-IBTS", "FR-CGFS"), years=2000:2022, quarters=c(1,3,4), quiet=TRUE)
fl <- dr_getdata(record="FL", surveys=c("FR-CGFS"), years=2020:2021, quarters=c(4), quiet=TRUE)

fl <- dr_getdata(record="FL", surveys=c("FR-CGFS"), years=2020:2021, quarters=c(4), 
                 fromweb=FALSE, folder="C:/DATA/DATRAS/raw", quiet=TRUE)

t <- dr_calclengthindex(surveys = c("NS-IBTS", "FR-CGFS"), years = 2005:2022, quarters=c(1,4),
                        fromweb=FALSE, folder="C:/DATA/DATRAS/raw", quiet=TRUE)

t %>% 
  filter(species=="HOM") %>% 
  mutate(zero = ifelse(number_per_hour == 0, TRUE, FALSE)) %>% 
  group_by(survey, quarter, year, species, zero) %>% 
  summarise(n=n()) %>% 
  group_by(survey, quarter, year, species) %>% 
  mutate(perc_zero = n / sum(n)) %>% 
  filter(zero == TRUE) %>% 
  ggplot(aes(x=year, y=perc_zero, group=survey)) +
  geom_line(aes(colour=survey))



folder="C:/DATA/DATRAS/raw"

dr_download_all(save_dir ="C:/DATA/DATRAS/raw", 
                surveys=c("FR-CGFS", "NS-IBTS"), 
                years=1990:2022, 
                quarters=c(1,3,4), 
                quiet=FALSE)

t %>% ggplot(aes(x=doorspread, y=wingspread)) + theme_bw() + geom_point()
t %>% ggplot(aes(x=sweptareadskm2, y=sweptareawskm2)) + theme_bw() + geom_point()
d <- dr_doodle2(survey = "FR-CGFS",
                quarters = 4,
                years = 2005:2022,
                folder="C:/DATA/DATRAS/raw")
top <- 
  readr::read_rds("C:/Users/MartinPastoors/Martin Pastoors/FLYSHOOT - General/rdata/top_27.7.d-27.7.e.rds")  %>% 
  mutate(PANEL=row_number())
library(DescTools)

# plot indices
p <-
  d |> 
  mutate(n = DescTools::Winsorize(n, probs=c(0, 0.95), na.rm=TRUE)) %>%
  mutate(B = n * 0.001 * length^3) |> 
  group_by(vessel, id, year, species, latin, english_name) |>
  # group_by(id, year, english_name) |> 
  summarise(
    B = sum(B), 
    N = sum(n),
    meanlength = weighted.mean(length, n), 
    .groups = "drop") |> 
  filter(species %in% top$species) |> 
  mutate(english_species = paste(english_name, species)) %>% 
  mutate(english_species = factor(english_species, levels=top$english_species)) %>% 

  # ggplot(aes(year, B, colour = vessel)) +
  ggplot(aes(year, N, colour = vessel)) +
  # ggplot(aes(year, B)) +
  theme_bw() +
  stat_summary(fun.data = "mean_cl_boot") +
  expand_limits(y = 0) +
  scale_colour_brewer(palette = "Set1") +
  scale_y_continuous(breaks = scales::pretty_breaks()) +
  facet_wrap(~english_species)

ggplot_build(p)$data[[1]] %>% 
  mutate(PANEL=as.integer(as.character(PANEL))) %>% 
  left_join(top) %>% 

  readr::write_rds(file="cgfs index.rds")



# HL %>% 
#   mutate(Valid_Aphia=as.numeric(Valid_Aphia)) %>% 
#   left_join(aphia_latin, by=c("Valid_Aphia"="aphia")) %>% 
#   filter(!is.na(LenMeasType), LenMeasType != 1) %>% 
#   group_by(latin, LenMeasType) %>% 
#   summarise(n=n()) %>% 
#   View()

# HL %>% 
#   mutate(Valid_Aphia=as.numeric(Valid_Aphia)) %>% 
#   left_join(aphia_latin, by=c("Valid_Aphia"="aphia")) %>% 
#   
#   setNames(tolower(names(.))) %>% 
#   
#   dplyr::mutate(length     = ifelse(lngtcode %in% c(".", "0"), lngtclass / 10, lngtclass)) |>
# 
#   # apply subfactor
#   dplyr::mutate(subfactor = ifelse(is.na(subfactor),1, subfactor)) |>
#   dplyr::mutate(hlnoatlngt = hlnoatlngt * subfactor) |>
#   
#   filter(grepl("Raja", latin)) %>%
#   mutate(lenmeastype = ifelse(is.na(lenmeastype), 0, lenmeastype)) %>% 
#   group_by(latin, lenmeastype, year) %>%
#   drop_na(length, hlnoatlngt) %>% 
#   summarise(meanlength=weighted.mean(length, hlnoatlngt)) %>% 
#   drop_na(meanlength) %>% 
#   # View()
#   
#   ggplot(aes(year, meanlength, colour = lenmeastype)) +
#   # ggplot(aes(year, B)) +
#   theme_bw() +
#   stat_summary(fun.data = "mean_cl_boot") +
#   expand_limits(y = 0) +
#   scale_colour_brewer(palette = "Set1") +
#   scale_y_continuous(breaks = scales::pretty_breaks()) +
#   facet_wrap(~latin)


# Start the clock
# ptm <- proc.time()
#   
# # icesDatras::getSurveyList()
# surveys <- "NS-IBTS"
# d       <- tibble::tibble(survey = surveys) %>% 
#            dplyr::mutate(year = purrr::map(survey, icesDatras::getSurveyYearList)) 
# proc.time() - ptm
# 
# d <- d %>% tidyr::unnest(year) 
# proc.time() - ptm
# 
# d <- d %>% dplyr::mutate(quarter = purrr::map2(survey, year, icesDatras::getSurveyYearQuarterList)) 
# proc.time() - ptm
# 
# d <- d %>% tidyr::unnest(quarter)
# proc.time() - ptm




# ptm <- proc.time()
#   
# # icesDatras::getSurveyList()
# surveys <- "NS-IBTS"
# d       <- dr_getdata(record = "HL", surveys="NS-IBTS", 1990:2023, c(1,3), quiet=TRUE)
# proc.time() - ptm
#  #   user  system elapsed 
#  # 247.39   25.04  471.30 
# 
# icesDatras::getDatrasDataOverview()


fishvice/tidyices documentation built on Sept. 12, 2023, 4:22 p.m.