knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE)
# remotes::install_github("fishvice/tidydatras", ref = "e5d9a0a", force = TRUE, # quiet = TRUE, dependencies = FALSE) library(tidyverse) library(tidydatras) source("../../R/doodle.R")
myquarter <- 3 d <- dr_doodle2(survey = "NS-IBTS", quarters = c(1,3), years = 2005:2022, folder="C:/DATA/DATRAS/raw")
top <- readr::read_rds("C:/Users/MartinPastoors/Martin Pastoors/FLYSHOOT - General/rdata/top_27.4.b-27.4.c.rds") %>% mutate(PANEL=row_number())
library(DescTools) # plot indices p <- d |> mutate(n = DescTools::Winsorize(n, probs=c(0, 0.95), na.rm=TRUE)) %>% filter(shootlat <= 57.5) %>% filter(species %in% top$species) |> mutate(B = n * 0.001 * length^3) |> group_by(id, year, species, latin, english_name) |> summarise( B = sum(B), N = sum(n), meanlength = weighted.mean(length, n), .groups = "drop") |> mutate(english_species = paste(english_name, species)) %>% mutate(english_species = factor(english_species, levels=top$english_species)) %>% # ggplot(aes(year, B, colour = vessel)) + ggplot(aes(year, N)) + # ggplot(aes(year, B)) + theme_bw() + stat_summary(fun.data = "mean_cl_boot") + expand_limits(y = 0) + scale_colour_brewer(palette = "Set1") + scale_y_continuous(breaks = scales::pretty_breaks()) + facet_wrap(~english_species) ggplot_build(p)$data[[1]] %>% mutate(PANEL=as.integer(as.character(PANEL))) %>% left_join(top) %>% # View() readr::write_rds(file=paste0("ibtsq",myquarter," index.rds")) # ggplot_build(p)$data[[1]] %>% # mutate(PANEL=as.integer(as.character(PANEL))) %>% # left_join(top) %>% # View() # HL %>% # mutate(Valid_Aphia=as.numeric(Valid_Aphia)) %>% # left_join(aphia_latin, by=c("Valid_Aphia"="aphia")) %>% # filter(!is.na(LenMeasType), LenMeasType != 1) %>% # group_by(latin, LenMeasType) %>% # summarise(n=n()) %>% # View() # HL %>% # mutate(Valid_Aphia=as.numeric(Valid_Aphia)) %>% # left_join(aphia_latin, by=c("Valid_Aphia"="aphia")) %>% # # setNames(tolower(names(.))) %>% # # dplyr::mutate(length = ifelse(lngtcode %in% c(".", "0"), lngtclass / 10, lngtclass)) |> # # # apply subfactor # dplyr::mutate(subfactor = ifelse(is.na(subfactor),1, subfactor)) |> # dplyr::mutate(hlnoatlngt = hlnoatlngt * subfactor) |> # # filter(grepl("Raja", latin)) %>% # mutate(lenmeastype = ifelse(is.na(lenmeastype), 0, lenmeastype)) %>% # group_by(latin, lenmeastype, year) %>% # drop_na(length, hlnoatlngt) %>% # summarise(meanlength=weighted.mean(length, hlnoatlngt)) %>% # drop_na(meanlength) %>% # # View() # # ggplot(aes(year, meanlength, colour = lenmeastype)) + # # ggplot(aes(year, B)) + # theme_bw() + # stat_summary(fun.data = "mean_cl_boot") + # expand_limits(y = 0) + # scale_colour_brewer(palette = "Set1") + # scale_y_continuous(breaks = scales::pretty_breaks()) + # facet_wrap(~latin) # Start the clock # ptm <- proc.time() # # # icesDatras::getSurveyList() # surveys <- "NS-IBTS" # d <- tibble::tibble(survey = surveys) %>% # dplyr::mutate(year = purrr::map(survey, icesDatras::getSurveyYearList)) # proc.time() - ptm # # d <- d %>% tidyr::unnest(year) # proc.time() - ptm # # d <- d %>% dplyr::mutate(quarter = purrr::map2(survey, year, icesDatras::getSurveyYearQuarterList)) # proc.time() - ptm # # d <- d %>% tidyr::unnest(quarter) # proc.time() - ptm # ptm <- proc.time() # # # icesDatras::getSurveyList() # surveys <- "NS-IBTS" # d <- dr_getdata(record = "HL", surveys="NS-IBTS", 1990:2023, c(1,3), quiet=TRUE) # proc.time() - ptm # # user system elapsed # # 247.39 25.04 471.30 # # icesDatras::getDatrasDataOverview() library(rnaturalearth) library(sf) bb <- st_bbox(c(xmin = -5, ymin = 51, xmax = 12, ymax = 63), crs = 4326) # bb <- st_bbox(c(xmin = -15, ymin = 42, xmax = 12, ymax = 63), # crs = 4326) cl <- rnaturalearth::ne_countries(scale = 50, continent = "europe", returnclass = "sf") |> st_make_valid() |> st_crop(bb) |> # sf::st_coordinates() |> # as_tibble() |> # mutate(group = paste(L1, L2, L3)) |> dplyr::select(group=admin) d %>% mutate(country=ifelse(country=="DE","DE","OTH")) %>% mutate(country=factor(country, levels=c("OTH","DE"))) %>% filter(year >= 2019) %>% distinct(id, shootlong, shootlat, country, quarter) %>% ggplot(aes(x=shootlong, y=shootlat)) + theme_bw() + geom_point(aes(colour=country, size=country)) + geom_sf(data = cl, inherit.aes = FALSE) + coord_sf(xlim=c(bb$xmin, bb$xmax), ylim=c(bb$ymin, bb$ymax)) + scale_size_manual(values=c("OTH"=0.5, "DE"=1)) + scale_colour_manual(values=c("OTH"="grey", "DE"="red")) + facet_wrap(~paste0("Q", quarter), ncol=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.