knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE)
# remotes::install_github("fishvice/tidydatras", ref = "e5d9a0a", force = TRUE, # quiet = TRUE, dependencies = FALSE) # devtools::install_github("ices-tools-prod/icesDatras", force=TRUE) library(icesDatras) library(tidyverse) library(tidydatras) source("../../R/doodle.R") # get flexfile overview t <- dr_getflexoverview(surveys=c("NS-IBTS", "FR-CGFS"), years=2000:2022, quarters=c(1,3,4)) HH <- dr_getdata(record="HH", surveys=c("NS-IBTS", "FR-CGFS"), years=2000:2022, quarters=c(1,3,4), quiet=TRUE) hh <- HH |> dr_tidy() %>% # Make tidy with column specifications dr_idunite(remove = FALSE) %>% # Add identifier dplyr::left_join(reco, by=c("ship" = "code")) # Add vesselname FL <- dr_getdata(record="FL", surveys=c("NS-IBTS", "FR-CGFS"), years=2000:2022, quarters=c(1,3,4), quiet=TRUE) fl <- FL |> dr_tidy() |> dr_idunite(remove = FALSE) %>% # Add identifier dplyr::left_join(reco, by=c("ship" = "code")) |> # Add vesselname dplyr::mutate(dplyr::across(c("sweptareadskm2","sweptareawskm2"), as.numeric)) # Need to add to dr_tidy HL <- dr_getdata(record="HL", surveys=c("NS-IBTS", "FR-CGFS"), years=2000:2022, quarters=c(1,3,4), quiet=TRUE) hl <- HL |> dr_tidy() %>% # Make tidy with column specifications dr_idunite(., remove = FALSE) |> # Add identifier dplyr::left_join(aphia_latin) %>% # Add scientific name dplyr::left_join(asfis) %>% # Add FAO species names and codes dplyr::left_join(reco, by = c("ship" = "code")) |> # Add vesselname # dplyr::left_join(cgfs_corr) %>% # CGFS correction factor? # dplyr::mutate(factor = ifelse(is.na(factor),1,factor), hlnoatlngt = hlnoatlngt * factor) #left join hh # join hh dplyr::left_join(hh %>% dplyr::select(id, datatype, hauldur, statrec, shootlong, shootlat, haulval, distance, doorspread, wingspread, depth), by = "id") |> # join fl dplyr::left_join(fl %>% dplyr::select(id, cal_distance, cal_doorspread, cal_wingspread, distanceflag, dsflag, wsflag, sweptareadskm2, sweptareawskm2), by = "id") |> tidyr::drop_na(sweptareadskm2) %>% # catch per hour dplyr::mutate(number_per_hour = dplyr::case_when( datatype %in% c("S", "R") ~ hlnoatlngt * 60 / hauldur, datatype == "C" ~ hlnoatlngt, TRUE ~ as.numeric(NA))) |> # catch per km2 wingspread dplyr::mutate(number_per_km2_ws = hlnoatlngt / sweptareawskm2) |> # catch per km2 doorspread dplyr::mutate(number_per_km2_ds = hlnoatlngt / sweptareadskm2) |> dplyr::mutate(length = floor(length)) |> dplyr::group_by(id, english_name, length) |> dplyr::summarise( number_per_hour = sum(number_per_hour), number_per_km2_ws = sum(number_per_km2_ws), number_per_km2_ds = sum(number_per_km2_ds), .groups = "drop") hl %>% ggplot(aes(x=number_per_hour, y=number_per_km2_ws)) + theme_bw() + geom_point()
d <- dr_doodle2(survey = "FR-CGFS", quarters = 4, years = 2005:2022, folder="C:/DATA/DATRAS/raw")
top <- readr::read_rds("C:/Users/MartinPastoors/Martin Pastoors/FLYSHOOT - General/rdata/top_27.7.d-27.7.e.rds") %>% mutate(PANEL=row_number())
library(DescTools) # plot indices p <- d |> mutate(n = DescTools::Winsorize(n, probs=c(0, 0.95), na.rm=TRUE)) %>% mutate(B = n * 0.001 * length^3) |> group_by(vessel, id, year, species, latin, english_name) |> # group_by(id, year, english_name) |> summarise( B = sum(B), N = sum(n), meanlength = weighted.mean(length, n), .groups = "drop") |> filter(species %in% top$species) |> mutate(english_species = paste(english_name, species)) %>% mutate(english_species = factor(english_species, levels=top$english_species)) %>% # ggplot(aes(year, B, colour = vessel)) + ggplot(aes(year, N, colour = vessel)) + # ggplot(aes(year, B)) + theme_bw() + stat_summary(fun.data = "mean_cl_boot") + expand_limits(y = 0) + scale_colour_brewer(palette = "Set1") + scale_y_continuous(breaks = scales::pretty_breaks()) + facet_wrap(~english_species) ggplot_build(p)$data[[1]] %>% mutate(PANEL=as.integer(as.character(PANEL))) %>% left_join(top) %>% readr::write_rds(file="cgfs index.rds") # HL %>% # mutate(Valid_Aphia=as.numeric(Valid_Aphia)) %>% # left_join(aphia_latin, by=c("Valid_Aphia"="aphia")) %>% # filter(!is.na(LenMeasType), LenMeasType != 1) %>% # group_by(latin, LenMeasType) %>% # summarise(n=n()) %>% # View() # HL %>% # mutate(Valid_Aphia=as.numeric(Valid_Aphia)) %>% # left_join(aphia_latin, by=c("Valid_Aphia"="aphia")) %>% # # setNames(tolower(names(.))) %>% # # dplyr::mutate(length = ifelse(lngtcode %in% c(".", "0"), lngtclass / 10, lngtclass)) |> # # # apply subfactor # dplyr::mutate(subfactor = ifelse(is.na(subfactor),1, subfactor)) |> # dplyr::mutate(hlnoatlngt = hlnoatlngt * subfactor) |> # # filter(grepl("Raja", latin)) %>% # mutate(lenmeastype = ifelse(is.na(lenmeastype), 0, lenmeastype)) %>% # group_by(latin, lenmeastype, year) %>% # drop_na(length, hlnoatlngt) %>% # summarise(meanlength=weighted.mean(length, hlnoatlngt)) %>% # drop_na(meanlength) %>% # # View() # # ggplot(aes(year, meanlength, colour = lenmeastype)) + # # ggplot(aes(year, B)) + # theme_bw() + # stat_summary(fun.data = "mean_cl_boot") + # expand_limits(y = 0) + # scale_colour_brewer(palette = "Set1") + # scale_y_continuous(breaks = scales::pretty_breaks()) + # facet_wrap(~latin) # Start the clock # ptm <- proc.time() # # # icesDatras::getSurveyList() # surveys <- "NS-IBTS" # d <- tibble::tibble(survey = surveys) %>% # dplyr::mutate(year = purrr::map(survey, icesDatras::getSurveyYearList)) # proc.time() - ptm # # d <- d %>% tidyr::unnest(year) # proc.time() - ptm # # d <- d %>% dplyr::mutate(quarter = purrr::map2(survey, year, icesDatras::getSurveyYearQuarterList)) # proc.time() - ptm # # d <- d %>% tidyr::unnest(quarter) # proc.time() - ptm # ptm <- proc.time() # # # icesDatras::getSurveyList() # surveys <- "NS-IBTS" # d <- dr_getdata(record = "HL", surveys="NS-IBTS", 1990:2023, c(1,3), quiet=TRUE) # proc.time() - ptm # # user system elapsed # # 247.39 25.04 471.30 # # icesDatras::getDatrasDataOverview()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.