SearchBayes: SearchBayes Class

Description Usage Arguments Value Super class Active bindings Methods

Description

A class defines a bayesian search task specification.

Usage

1
new_search_bayes(options = NULL, keys = NULL, metric_name = NULL)

Arguments

options

A Options class object.

keys

A named character vector of keys.

metric_name

A character scalar of metric_name.

Value

A new SearchBayes class object

Super class

ml4e::Task -> SearchBayes

Active bindings

metric_name

A metric name.

is_new_grid

A logical wheather grid is new.

done

A logical if finished

error

A logical if error

result

A task result.

Methods

Public methods

Inherited methods

Method new()

Construct a new SearchBayes class object.

Usage
SearchBayes$new(options = NULL, keys = NULL, metric_name = NULL)
Arguments
options

A Options class object.

keys

A named character vector of keys.

metric_name

A character scalar of metric name. If NULL, the first metric_name in self$options$measure$metric_names is used.

Returns

A new SearchBayes class object


Method print()

Print object.

Usage
SearchBayes$print()

Method do()

Run a bayesian optimization. The result will be stored in self$result.

Usage
SearchBayes$do(
  init_grid_dt = NULL,
  init_points = 4L,
  n_iter = 5L,
  acq = "ucb",
  kappa = 2.576,
  eps = 0,
  kernel = list(type = "exponential", power = 2L)
)
Arguments
init_grid_dt

A data.frame of init_grid_dt.

init_points

A integer scalar of init_points.

n_iter

A integer scalar of n_iter.

acq

A character scalar of acq (aquisition function). Can be "ucb", "ei" or "poi".

kappa

A numeric scalar of kappa.

eps

A numeric scalar of eps.

kernel

A list of kernal parameters.

Returns

A data.frame of best parameters.


Method clone()

The objects of this class are cloneable with this method.

Usage
SearchBayes$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.


five-dots/ml4e documentation built on June 19, 2020, 4:26 p.m.