## parameters a <- sample(2:9, 1) b <- sample(seq(2, 4, 0.1), 1) c <- sample(seq(0.5, 0.8, 0.01), 1) ## solution res <- exp(b * c) * (a * c^(a-1) + b * c^a)
What is the derivative of $f(x) = x^{r a} e^{r b x}$, evaluated at $x = r c$?
Using the product rule for $f(x) = g(x) \cdot h(x)$, where $g(x) := x^{r a}$ and $h(x) := e^{r b x}$, we obtain
$$
\begin{aligned}
f'(x) &= [g(x) \cdot h(x)]' = g'(x) \cdot h(x) + g(x) \cdot h'(x) \
&= r a x^{r a - 1} \cdot e^{r b x} + x^{r a} \cdot e^{r b x} \cdot r b \
&= e^{r b x} \cdot(r a x^r a-1 + r b x^{r a}) \
&= e^{r b x} \cdot x^r a-1 \cdot (r a + r b x).
\end{aligned}
$$
Evaluated at $x = r c$, the answer is
$$ e^{r b \cdot r c} \cdot r c^r a-1 \cdot (r a + r b \cdot r c) = r fmt(res, 6). $$
Thus, rounded to two digits we have $f'(r c) = r fmt(res)$.
extype: num
exsolution: r fmt(res)
exname: derivative exp
extol: 0.01
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.