Screening evaluated nuclear data integral performance
knitr::opts_chunk$set( collapse = TRUE, comment = "#>", echo=FALSE, message=FALSE, warning=FALSE, eval=TRUE, fig.align='center' #fig.width = 100pct ) htmltools::tagList(rmarkdown::html_dependency_font_awesome()) library(dplyr) library(plotly)
The sendis R package provides datasets and simple functions to expedite common tasks in the comparison of integral benchmarking performance of nuclear data libraries.
The ability of a nuclear data library to accurately reproduce the observables of integral benchmark experiments in transport simulations plays a key role in the data validation process.
Some helpful tools that help with the questions above have been developed in this package.
Interactive graphs are easily rendered using plotly :
data(sendis) df<-filter(sendis, INST=="NEA", VER!="2.2") p1<-plot_cumulchi(df)%>% layout(xaxis = list(title = "Benchmark suite"), yaxis = list(title = TeX("\\chi^2")))%>% config(mathjax = "cdn") # to display later using iframe, in order to render Mathjax : # htmlwidgets::saveWidget(p1, "myplot.html")
```{css, echo=FALSE}
div.blue { background-color:#e6f0ff; border-radius: 5px; padding: 20px;}
.holds-the-iframe { background:url(files/pacman_loader.gif) center center no-repeat; }
.col-left{ float: left; width: 50%; text-align: left; }
.col-right{ float: right; width: 50%; text-align: right; }
```r # Load library library(sendis) # Filter through data as needed df<-filter(sendis, INST=="NEA") # Plot sendis::plot_cumulchi(df)
For seeing trends and filtering through the data, an interactive Shiny application has been developed.
For Mac users : download a
launcher
for the sendis app and double-click the sendis icon.
Alternatively, use the command line in an R session :
library(sendis) sendis::runApp()
Integrate sendis into an Rmarkdown workflow to generate automated diagnosis pdf reports.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.