Build Status Github All Releases




Screening evaluated nuclear data integral performance

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>", 
  echo=FALSE, 
  message=FALSE, 
  warning=FALSE, 
  eval=TRUE,
  fig.align='center'
  #fig.width = 100pct
  ) 

htmltools::tagList(rmarkdown::html_dependency_font_awesome())

library(dplyr)
library(plotly) 


The sendis R package provides datasets and simple functions to expedite common tasks in the comparison of integral benchmarking performance of nuclear data libraries.

Background

The ability of a nuclear data library to accurately reproduce the observables of integral benchmark experiments in transport simulations plays a key role in the data validation process.

Some helpful tools that help with the questions above have been developed in this package.

Examples

Interactive graphs are easily rendered using plotly :

data(sendis) 
df<-filter(sendis, INST=="NEA", VER!="2.2")
p1<-plot_cumulchi(df)%>%
  layout(xaxis = list(title = "Benchmark suite"),
         yaxis = list(title = TeX("\\chi^2")))%>%
  config(mathjax = "cdn")
# to display later using iframe, in order to render Mathjax : 
# htmlwidgets::saveWidget(p1, "myplot.html")

```{css, echo=FALSE}

div.blue { background-color:#e6f0ff; border-radius: 5px; padding: 20px;}

.holds-the-iframe { background:url(files/pacman_loader.gif) center center no-repeat; }

.col-left{ float: left; width: 50%; text-align: left; }

.col-right{ float: right; width: 50%; text-align: right; }

```r
# Load library
library(sendis)

# Filter through data as needed 
df<-filter(sendis, INST=="NEA")

# Plot
sendis::plot_cumulchi(df)

The sendis app

For seeing trends and filtering through the data, an interactive Shiny application has been developed.

library(sendis)
sendis::runApp()

Reproducible, automated reporting

Integrate sendis into an Rmarkdown workflow to generate automated diagnosis pdf reports.



fmichelsendis/sendis documentation built on June 16, 2019, 7:30 a.m.