varUn | R Documentation |
Compute the unbiased variance estimator of a general 2-sample U-statistic
varUn(sample1, sample2, k1, k2, phi, B = Inf, u_stat = NULL)
sample1 |
The first sample. |
sample2 |
The second sample. |
k1 |
The number of observations drawn from sample 1 to compute the kernel function phi. |
k2 |
The number of observations drawn from sample 2 to compute the kernel function phi. |
phi |
The kernel function of the U-statistic |
B |
The number of random partitions in the partition-resampling realization. |
u_stat |
The value of the U-statistic. This is an optional argument. If provided, Q(k) is computed as the square of the inputted u_stat value. Otherwise, the complete U-statistic is computed based on the input kernel function phi. |
The variance of a 2-sample U-statistic
Q. Wang and A. Guo (2020). An efficient variance estimator of AUC with applications to binary classification. Statistics in Medicine 39 (28): 4281-4300. DOI: 10.1002/sim.8725.
library(VGAM)
N <- 500
true.rho <- 0.7
data.mat <- rbinorm(N, cov12 = true.rho) # Bivariate normal
x <- data.mat[, 1]
y <- data.mat[, 2]
u_stat_value <- kendall.tau(x,y,exact=TRUE) # Exact value of Kendall Tau statistic
# Phi function for the Kendall Tau statistic
kernel <- function (s1, s2){
result <- 0
ind <- 0
if (s1[1] < s2[1] && s1[2] < s2[2]){
ind <- 1
} else if (s1[1] > s2[1] && s1[2] > s2[2]) {
ind <- 1
}
return (2*(ind)-1)
}
varUn(x, y, 2, 2, kernel, 10^3, u_stat_value)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.