fhi::DashboardInitialiseOpinionated("sykdomspuls", PACKAGE_DIR=params$package_dir, FORCE_DEV_PACKAGE_LOAD = params$dev, SILENT=TRUE) suppressMessages(library(data.table)) suppressMessages(library(ggplot2)) suppressMessages(library(kableExtra)) suppressMessages(library(fhiplot)) suppressMessages(library(lubridate)) suppressMessages(library(fhidata)) start_date = ymd("2019-01-01") conn <- DBI::dbConnect(odbc::odbc(), driver = fd::config$db_config$driver, server = fd::config$db_config$server, port = fd::config$db_config$port, user = fd::config$db_config$user, password = fd::config$db_config$password ) fd::use_db(conn, fd::config$db_config$db) db <- dplyr::tbl(conn, "spuls_standard_results") d <- db %>% dplyr::filter(tag=="emerg1" & granularity_time=="weekly") %>% dplyr::select(date, age, n, location_code, granularity_geo) %>% dplyr::collect() setDT(d) county <- d[granularity_geo =="county" | granularity_geo =="national"] municip <- d[granularity_geo =="municip"] county <- county[,age:=factor(age,levels=names(CONFIG$AGES))] county_year = county[date >=start_date] municip_year = municip[date >=start_date]
\newpage
q <- ggplot(county_year[location_code=="Norge" & age == "Totalt"]) + geom_col(aes(x=date, y=n), fill = fhiplot::base_color, width = 4) + theme_fhi_lines() + ylab("") q
pd <- fhidata::norway_map_counties plot_data <- data.table(pd)[county_year[, .(N=sum(n)), by=.(location_code)], on="location_code", nomatch=0] max <- max(plot_data$N) plot_data <- plot_data[, binned := cut(N , round(max/5 * 0:5))] q <- ggplot() q <- q + geom_polygon(data = plot_data, aes( x = long, y = lat, group = group, fill=binned), color="black") q <- q + theme_void() q <- q + coord_quickmap() q <- q + fhiplot::scale_fill_fhi("Cases", palette = "map_seq_complete", direction = 1) q
pop <- fhidata::norway_population_current pop <- data.table(pop)[, .(pop=sum(pop)), by=.(location_code)] municip_cases <- municip_year[, .(N=sum(n)), by=.(location_code)][pop, on=.(location_code=location_code), nomatch=0] municip_cases <- municip_cases[, .(location_code, N, incidence = round(N / pop * 1000, 1))][data.table(fhidata::norway_locations_current), on=.(location_code=municip_code), nomatch=0] table <- municip_cases[order(-N), .(municip_name, N, incidence)][1:35] setnames(table,c( "Municipality","Cases","Incidence per 1000 inhabitants") ) k <- knitr::kable(table, "latex", booktabs = T, align = "c", linesep = "") print(k)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.