sthpcpp | R Documentation |
Generate a random spatio-temporal point pattern, a simulated realisation of the cluster process.
sthpcpp(lambp, r, mu, s.region, t.region)
lambp |
Intensity of the Poisson process of cluster centres. |
r |
Radius parameter of the clusters. |
mu |
Mean number of points per cluster (a single positive number) or reference intensity for the cluster points (a function or a pixel image). |
s.region |
A two-column matrix specifying a polygonal region containing all data locations. If |
t.region |
A vector containing the minimum and maximum values of the time interval. If |
This function generates a realisation of spatio-temporal cluster process, which can be considered as generalisation of the classical Matern cluster process, inside the spatio-temporal window.
Consider a Poisson point process in the plane with intensity \lambda_{p}
as cluster centres for all times 'parent', as well as a infinite cylinder of radius R
around of each Poisson point, orthogonal to the plane. The scatter uniformly in all cylinders of all points which are of the form (x,y,z)
, the number of points in each cluster being random with a Poisson (\mu
) distribution. The resulting point pattern is a spatio-temporal cluster point process with t=z
. This point process has intensity \lambda_{p} * \mu
.
The simulated spatio-temporal point pattern.
Francisco J. Rodriguez Cortes <cortesf@uji.es> https://fjrodriguezcortes.wordpress.com
Baddeley, A., Rubak, E., Turner, R. (2015). Spatial Point Patterns: Methodology and Applications with R. CRC Press, Boca Raton.
Chiu, S. N., Stoyan, D., Kendall, W. S., and Mecke, J. (2013). Stochastic Geometry and its Applications. John Wiley & Sons.
Gabriel, E., Rowlingson, B., Diggle P J. (2013) stpp
: an R package for plotting, simulating and analyzing Spatio-Temporal Point Patterns. Journal of Statistical Software 53, 1-29.
Illian, J B., Penttinen, A., Stoyan, H. and Stoyan, D. (2008). Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley and Sons, London.
Stoyan, D., Rodriguez-Cortes, F. J., Mateu, J. and Wilfried, G. (2016). Mark variograms for spatio-temporal point processes, Submitted .
Rodriguez-Cortes, F. J.(2015). mvstpp
: Mark Variogram for Spatio-Temporal Point Processes. GitHub repository. URL https://github.com/frajaroco/mvstpp.
## Not run:
#################
require(plot3D)
X <- sthpcpp(lambp=20, r=0.05, mu=100)
plot(X$xyt)
par(mfrow=c(1,1))
scatter3D(X$xyt[,1],X$xyt[,2],X$xyt[,3],theta=45,phi=30,
main="Spatio-temporal point pattern",xlab="\n x",ylab="\n y",
zlab="\n t",ticktype="detailed",col="black")
## Spatio-temporal hot-spots cluster point process model
data(northcumbria)
Northcumbria <- northcumbria/1000
Xo <- sthpcpp(lambp=0.0035, r=5, mu=200, s.region=Northcumbria,
t.region=c(28,198))
plot(Xo$xyt,s.region=Northcumbria)
# plot scatterplot3d
par(mfrow=c(1,1))
scatter3D(Xo$xyt[,1],Xo$xyt[,2],Xo$xyt[,3],theta=45,phi=30,
main="Spatio-temporal point pattern",xlab="\n x",ylab="\n y",
zlab="\n t",ticktype="detailed",col="black")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.