# evaluate_TS <- function(x) {
# # Collect metrics about the taxon diversity of a sample (outputIDs).
# #
# # Args:
# # taxlist: _taxonsampling_ list object returned by [run_TS()]
# # Returns:
# # listTaxon: (char) children taxa selected at least once per level.
# ow <- options("warn")
# options(warn = -1)
# selectedIDs <- get_taxonomy_counts(ids_df = data.frame(taxID = x$outputIDs,
# seqID = NA),
# nodes = x$nodes, verbose = FALSE)
# options(ow)
# listTaxon <- list()
# listBias <- list()
#
# # Find the sub-taxa (children nodes) of the current taxon
# children <- 1
# while (length(children) > 0) {
# taxon <- as.integer(children)
# children <- selectedIDs$nodes$id[(selectedIDs$nodes$parent %in% taxon) & !(selectedIDs$nodes$id %in% taxon)]
# children <- intersect(children, names(selectedIDs$countIDs))
#
# selectedChildren <- intersect(children, names(selectedIDs$countIDs))
# listTaxon <- c(listTaxon, list(selectedChildren))
# }
#
# return(listTaxon)
# }
#
#
# library(pbmcapply)
# library(dplyr)
#
# #Number of reps
# n <- 10
#
# # preprocess stuff:
# taxlist <- get_taxonomy_counts(taxonomy_path = "data_files/taxdump/",
# ids_file = "data_files/metadata/TaxID2SeqID.txt") %>%
# get_species_counts(spp_file = "data_files/metadata/TaxID2sppCounts.tsv")
#
# # Test parameters
# rand <- c("yes", "no", "after_first_round")
# meth <- c("diversity", "balanced")
# samp <- c("agnostic", "known_species")
# repl <- c(TRUE, FALSE)
# m <- 50 * (1:8)
# pars <- expand.grid(rand=rand, meth=meth, samp=samp, repl=repl, m = m,
# stringsAsFactors = FALSE)
# pars <- pars[-which(pars$meth == "balanced" & pars$rand == "after_first_round"), ]
#
# output <- vector("list", nrow(pars))
# for (k in 1:nrow(pars)){
# cat(sprintf("\nTrying %02d/%02d: [%s]", k, nrow(pars), paste(pars[k, ], collapse = ",")))
# output[[k]] <- list(pars = pars[k, ])
#
# out <- vector("list", n)
# names(out) <- paste0("Rep", 1:n)
# for (i in 1:n){
# out[[i]]$tl <- run_TS(taxlist = taxlist,
# taxon = 40674,
# m = pars$m[k],
# seq_file = NULL,
# out_file = NULL,
# method = pars$meth[k],
# randomize = pars$rand[k],
# replacement = pars$repl[k],
# ignoreIDs = 9598,
# requireIDs = 9606,
# ignoreNonLeafIDs = NULL,
# sampling = pars$samp[k],
# verbose = FALSE)
#
# out[[i]]$perf <- evaluate_TS(out[[i]]$tl)
# out[[i]]$tl$nodes <- NULL
# out[[i]]$tl$spp_df <- NULL
# }
#
# output[[k]]$out <- out
# }
#
# saveRDS(output, "./results/test.rds")
#
#
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.