mcEM: Monte-Carlo Expectation Maximization algorithm for...

Description Usage Arguments Value Author(s) References

View source: R/EMPHASIS_package.R

Description

MCEM routine with fixed sampling size

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
mcEM(brts, 
     pars, 
     sample_size, 
     model, 
     soc, 
     tol,
     burnin,
     print_process,
     paralell,
     cores)

Arguments

brts

branching times of the phylogenetic tree to be analyzed

pars

initial parameters for the MCEM routine

sample_size

Monte Carlo sample size

model

Species diversification model

soc

Initial number of species

tol

Tolerance level for the loglikelihood

burnin

Number of iterations to drop before performing MCEM for estimation

print_process

print loglikelihood estimation at every MCEM iteration

parallel

TRUE to perform the mcE step in paralell computing

cores

Number of cores to use in case of using parallel computing

Value

mcem

MCEM chain with parameter values, loglikelihood estimation and sample size at every iteration

Author(s)

Francisco Richter

References

[1] Richter, F., Haegeman, B., Etienne, R. S., & Wit, E. C. (2020). Introducing a general class of species diversification models for phylogenetic trees. Statistica Neerlandica.


franciscorichter/emphasisR documentation built on Dec. 20, 2021, 8:50 a.m.