DPGMMclus: DPGMMclus S3 Method

Description Usage Arguments Value Author(s) Examples

Description

Nonparametric Bayesian Dirichlet-Gaussian clustering of daily clearness index distributions. It can be also used to perform any data clustering of class matrix other than irradiance data of class SIRData.

Usage

1
DPGMMclus(obj, n.iter, n.burn)

Arguments

obj

object of class SIRData (see SIR_Data) or a matrix object containing the clearness index distributions.

n.iter

numeric(1) represents the number of iterations

n.burn

numeric(1) represents the number of burn-in iterations (ignored iterations)

Value

an object of clusData class containing:

cl_seq

numeric vector represents the class sequence.

like_par

list0object represents the parameters of each class. 1st element is the mean (numeric vector), 5th element is the precision matrix (inverse of the co-variance matrix) of the class.

lik_con_par

numeric(1), represents the inferred concentration parameter alf.

Con_par_sam_seq

numeric vector, represents the posterior distribution of alf.

seq_cl_num

numeric vector, represents the distribution of the class numbers.

bet_seq

numeric vector, represents the destribution of the beta parametrer of the precision matrix.

like_cl

numeric vector, represents the number of elements of each class.

calc_time

numeric(1) represents the computing time consumed.

Author(s)

Azeddine Frimane Azeddine.frimane@uit.ac.ma; Azeddine.frimane@yahoo.com

Examples

1
2
3
4
5
6
7
 
# The example and data below are just to give an idea of how the script works and not to judge the performance of the method.
  
data("SIRData_obj")

newClustering <- DPGMMclus(SIRData_obj, n.iter = 1000, n.burn = 500)
# for class ploting see \code{\link{clPlot}}

frimane/SolarClusGnr documentation built on May 8, 2019, 8:58 p.m.