#' Data Frame of Starting Population for fitting FYPurePacejka2002
#'
#' Starting population is 180 sets of randomly generated coefficients that
#' provide a starting point for the genetic solver. The minimum and maximum
#' limits of each parameter in the solution are taken from the minimum
#' and maximum values in this data frame.
#'
#' @format A data frame
"dfStartParFY"
#' Data Frame of Starting Population for fitting FXPurePacejka2002
#'
#' Starting population is 150 sets of randomly generated coefficients that
#' provide a starting point for the genetic solver. The minimum and maximum
#' limits of each parameter in the solution are taken from the minimum
#' and maximum values in this data frame. Population works with both
#' FXPurePacejka2002.wIA and FXPurePacejka2002.NoIA.
#'
#' @format A data frame
"dfStartParFX"
#' tirefittingr built in datasets
#'
#' Fake tire data made from randomly generated parameters
#' @format A data frame with 1451 rows and 8 variables:
#' \describe{
#' \item{SA}{Slip Angle in degrees}
#' \item{IA}{Inclination Angle in degrees}
#' \item{FZ}{Normal Load in N}
#' \item{FY}{Lateral Load in N}
#' \item{TSTC}{Temperature in C}
#' \item{FX}{Longitudinal Load in N}
#' \item{SR}{Slip Ratio (unitless)}
#' \item{P}{Pressure in kPa}
#' }
"ABCrun1LatPreProccessed"
#' tirefittingr built in datasets
#'
#' Fake tire data made from randomly generated parameters
#' @format A data frame with 1451 rows and 8 variables:
#' \describe{
#' \item{SA}{Slip Angle in degrees}
#' \item{IA}{Inclination Angle in degrees}
#' \item{FZ}{Normal Load in N}
#' \item{FY}{Lateral Load in N}
#' \item{TSTC}{Temperature in C}
#' \item{FX}{Longitudinal Load in N}
#' \item{SR}{Slip Ratio (unitless)}
#' \item{P}{Pressure in kPa}
#' }
"ABCrun2LatPreProccessed"
#' tirefittingr built in datasets
#'
#' Fake tire data made from randomly generated parameters
#' @format A data frame with 606 rows and 8 variables:
#' \describe{
#' \item{SL}{Slip Ratio (unitless)}
#' \item{IA}{Inclination Angle in degrees}
#' \item{FZ}{Normal Load in N}
#' \item{FX}{Longitudinal Load in N}
#' \item{SA}{Slip Angle in degrees}
#' \item{TSTC}{Temperature in C}
#' \item{FY}{Lateral Load in N}
#' \item{P}{Pressure in kPa}
#' }
"ABCrun1LongPreProccessed"
#' tirefittingr built in datasets
#'
#' Fake tire data made from randomly generated parameters
#' @format A data frame with 606 rows and 8 variables:
#' \describe{
#' \item{SL}{Slip Ratio (unitless)}
#' \item{IA}{Inclination Angle in degrees}
#' \item{FZ}{Normal Load in N}
#' \item{FX}{Longitudinal Load in N}
#' \item{SA}{Slip Angle in degrees}
#' \item{TSTC}{Temperature in C}
#' \item{FY}{Lateral Load in N}
#' \item{P}{Pressure in kPa}
#' }
"ABCrun2LongPreProccessed"
### NOTE: Updates to the datasets that are included in the package are generated
# and saved in the NoPublish.R script within the /R folder.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.