knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  echo = FALSE,
  warning = FALSE,
  message = FALSE
)

library(magrittr)

Several approaches were taken in order to achieve the following analysis.

I. First batch of analysis is descriptive in nature. It is an attempt in Covid-19 symptom mapping. II. With the first step findings achieved, second step focuses on whether there are differences in Covid-19 symptom in different comorbidity groups of respondents. Univariate analysis and multivariate logistic regression has aid the second stage analysis.

data_select <- readr::read_csv("/Users/gabrielburcea/Rprojects/data/data_descr_15062020.csv")

data_select %>% dplyr::distinct(covid_tested)
#data_map <- readr::read_csv("../Rprojects/data/PivotMappe060520r.csv")
# world_map <- cvindia::count_mapp_world(data = data_select, start_date = as.Date("2020-04-09", format = "%Y-%m-%d"),
#                          end_date = as.Date("2020-05-09", format = "%Y-%m-%d" ), plot_chart = TRUE)
# 
# world_map
# world_map <- cvindia::count_mapp_world(data = data_map, start_date = as.Date("2020-04-09", format = "%Y-%m-%d"),
#                          end_date = as.Date("2020-05-09", format = "%Y-%m-%d" ), plot_chart = FALSE)
# 
# knitr::kable(world_map)

I. Descriptive analytics

Exploratory questions of interest are: 1. How does symptom profile map to mild/moderate/severe? 2. Does symptom profile differ by underlying co-morbidity?

Answering to first question: 1. How does symptom profile map to mild/moderate/severe?

We choose to look at the most common symptoms according to UK guidelines in patients who reported that they had a Covid 19 positive test. We look at these symptoms according to whether they were reported as mild/moderate/severe

symtoms_covid_in_resp <- cvindia::symptom_profile_covid_tested(data = data_select, start_date = as.Date("2020-04-01", format = "%Y-%m-%d"), 
                                           end_date = as.Date("2020-09-01", format = "%Y-%m-%d"), plot_chart = TRUE)
symtoms_covid_in_resp

Cough, followed by muscle ache are the most symptoms in patient who declared they had a Covid-19 positive test. Loss of smell and shorthness of breath are next. Yet, as observed there are different levels of severity, were mild form of symptoms are reported.

symtoms_covid_in_resp <- cvindia::symptom_profile_covid_tested(data = data_select, start_date = as.Date("2020-04-01", format = "%Y-%m-%d"), 
                                           end_date = as.Date("2020-09-01", format = "%Y-%m-%d"), plot_chart = FALSE)

sympt_cov_in_resp_n <- dplyr::top_n(symtoms_covid_in_resp, 10)

knitr::kable(dplyr::top_n(sympt_cov_in_resp_n, 10))

The next barchart takes into accound all other symptoms for the purpose of comparison. However, fatigue seems to have the highest countS, followed by the most common symptoms of Covid-19.

all_syptpms_frequency <- cvindia::symptom_profile_frequency_plot(data = data_select, start_date = as.Date("2020-04-09", format = "%Y-%m-%d"), 
                                            end_date = as.Date("2020-05-09", format = "%Y-%m-%d"),
                                            plot_chart = TRUE)

all_syptpms_frequency

Table bellow shows the first ten most occurring symptoms taking into account the level of severity. However, the most common symptoms expressed in level of severity are Cough as a mild for, shortness of breath, fatigue, muscle ache and headache, all in a mild form.

all_syptpms_numbers <- cvindia::symptom_profile_frequency_plot(data = data_select, start_date = as.Date("2020-04-09", format = "%Y-%m-%d"), 
                                            end_date = as.Date("2020-05-09", format = "%Y-%m-%d"),
                                            plot_chart = FALSE)

all_sympt_numb <- dplyr::top_n(all_syptpms_numbers, 10)


ten_most_occuring_symptoms <- dplyr::top_n(all_sympt_numb, 10)

knitr::kable(ten_most_occuring_symptoms)

Most people who are completing are reporting their symptoms as mild. However, this are non-generalizable cohort.

diagn_mild_mod_severe <- cvindia::self_diagnosis_mild_mod_severe(data = data_select, start_date = as.Date("2020-04-09"), end_date = as.Date("2020-05-09"), plot_chart = TRUE, title = "Self Report")

diagn_mild_mod_severe
self_reported <- cvindia::self_diagnosis_mild_mod_severe(data = data_select, start_date = as.Date("2020-04-09"), 
                                                    end_date = as.Date("2020-05-09"), plot_chart = FALSE, title = "Test")


self_reported_n <- dplyr::top_n(self_reported, 10)

knitr::kable(self_reported_n)

Respondents who tested covid positive have reported the 37.5-38 temperature as the most frequent.

temperature <-  cvindia::temparature_covid_tested(data = data_sel, start_date = as.Date("2020-04-09"), 
                                                    end_date = as.Date("2020-05-09"), plot_chart = TRUE)

temperature
temperature <-  cvindia::temparature_covid_tested(data = data_select, start_date = as.Date("2020-04-09"), 
                                                    end_date = as.Date("2020-05-09"), plot_chart = FALSE)

temperature

The bellow barchart maps the patients who claimed their symptoms were overall mild. What symptoms did they have? The most prevalent symptoms are cough, fatigue, sore throat, sputum and muscle ache.

mild <- cvindia::symptom_profile_mild(data = data_select, start_date = as.Date("2020-04-09"), 
                                                    end_date = as.Date("2020-05-09"), plot_chart = TRUE)

mild

The most prevalent symptoms are cough, fatigue, sore throat, sputum and muscle ache.

mild <- cvindia::symptom_profile_mild(data = data_select, start_date = as.Date("2020-04-09"), 
                                                    end_date = as.Date("2020-05-09"), plot_chart = FALSE)

knitr::kable(dplyr::top_n(mild, 10))

Bellow chart is mapping the patients claiming their symptoms were overall moderate. What symptoms did they have?

moderate <- cvindia::moderate_manifestation_plot(data = data_select, start_date = as.Date("2020-04-09"), 
                                                    end_date = as.Date("2020-05-09"), plot_chart = TRUE)

moderate

Shortness of breath, cough, sputum fatigue as a mild form followed by moderate fatigue are the first 5 symptoms declared by the respondents of Your.md app.

moderate <- cvindia::moderate_manifestation_plot(data = data_select, start_date = as.Date("2020-04-09"), 
                                                    end_date = as.Date("2020-05-09"), plot_chart = FALSE)

moderate_n <- dplyr::top_n(moderate, 10)
knitr::kable(moderate_n)

Bellow chart is mapping the patients claiming their symptoms were overall severe, What symptoms did they have?

severe <- cvindia::severe_manifestation_plot(data = data_select, start_date = as.Date("2020-04-09"), 
                                                    end_date = as.Date("2020-05-09"), plot_chart = TRUE)

severe

Cough, sputum, sore throat, shortness of breath and headache in mild form are the first 5 symptoms.

severe <- cvindia::severe_manifestation_plot(data = data_select, start_date = as.Date("2020-04-09"), 
                                                    end_date = as.Date("2020-05-09"), plot_chart = FALSE)

severe_n <- dplyr::top_n(severe, 10)

knitr::kable(severe_n)

As a conclusion we may pressume a symptom trajectory in covid-19 positive tested. Mild sore throat which then progresses to a cough, and shortness of breath?

  1. Does symptom profile differ by underlying co-morbidity?

The bar chart bellow shows symptom across co-morbidity groups. By observing the obesity and hypertensive patients, although we see a similar pattern in symptom manifestation, there are slight differences when it comes to sputum and sore throat. In hypertensive respondents sore throat is more prominent than in obese respondents, which are experiencing more sputum. This is not the same with respondent with asthma, which are experiencing sputum and shortness of breath, where sore throat comes on the fourth place, after muscle ache.

data_select <- read_csv("/Users/gabrielburcea/Rprojects/data/PivotMappe060520r.csv")


comorb_cov_sympt <- cvindia::comorbidities_symptoms(data = data_select, start_date = as.Date("2020-04-09"), 
                                                    end_date = as.Date("2020-05-09"), plot_chart = TRUE)


comorb_cov_sympt
no_cov <- function(data,start_date = as.Date("2020-04-09", tz = "Europe/London"),
                              end_date = as.Date("2020-05-06",tz = "Europe/London"), plot_chart = TRUE){


  show_sympt_cov <- data %>%
    dplyr::select(id, covid_tested, chills, cough, diarrhoea, fatigue, headache, loss_smell_taste, muscle_ache, nasal_congestion, nausea_vomiting, 
                  shortness_breath, sore_throat, sputum, temperature) %>%
    tidyr::pivot_longer(cols=3:15, names_to="Symptom", values_to="Answer") %>%
    dplyr::filter(covid_tested == 'none') %>%
    dplyr::group_by(Symptom, Answer) %>%
    dplyr::summarise(Count = n()) %>%
    dplyr::mutate(Percent = Count/sum(Count)) %>%
    dplyr::filter(Symptom != 'temperature')


  title_stub <- "Symptoms in respondents with no covid\n"
  start_date_title <- format(as.Date(start_date), format = "%d %B %Y")
  end_date_title <- format(as.Date(end_date), format = "%d %B %Y")
  chart_title <- paste0(title_stub, start_date_title, " to ", end_date_title)


  plot_show_symptoms <-
    ggplot2::ggplot(show_sympt_cov, ggplot2::aes(x = reorder(Symptom,-Count), Count, fill = Answer)) +
    ggplot2::coord_flip() +
    ggplot2::geom_bar(stat = "identity", position = "dodge") +
    ggplot2::scale_x_discrete(limits = unique(show_sympt_cov$Symptom)) +
    ggplot2::theme(legend.position = "bottom") +
    ggplot2::scale_fill_brewer(palette="Oranges")+
    ggplot2::theme_minimal() +
    ggplot2::guides(fill = ggplot2::guide_legend(nrow = 3)) +
    ggplot2::labs( title = chart_title,
                   subtitle = "Counts of symptoms in respondents with no Covid-19",
                   y = "Counts",
                   x = "Symptoms",
                   caption = "Source: Dataset - Your.md Dataset") +
    ggplot2::theme(
      axis.title.y = ggplot2::element_text(margin = ggplot2::margin(
        t = 0,
        r = 21,
        b = 0,
        l = 0
      )),
      plot.title = ggplot2::element_text(size = 10, face = "bold"),
      plot.subtitle = ggplot2::element_text(size = 9),
      legend.position = "bottom",
      legend.box = "horizontal",
      axis.text.x = ggplot2::element_text(angle = 55, hjust = 1)
    )

  plot_show_symptoms

  if(plot_chart == TRUE){


    plot_show_symptoms

  }else{

    show_sympt_cov

  }
}
library(tidyverse)


cov_sympt_plot <- cvindia::no_cov(data = data_no_sev,start_date = as.Date("2020-04-09", tz = "Europe/London"),
                              end_date = as.Date("2020-05-06",tz = "Europe/London"), plot_chart = TRUE)

plotly::ggplotly(cov_sympt_plot)
comorb_cov_sympt_num <- cvindia::comorbidities_symptoms(data = data_select, start_date = as.Date("2020-04-09"), 
                                                    end_date = as.Date("2020-05-09"), plot_chart = FALSE)


comorb_cov_sympt_num


#knitr::kable(dplyr::top_n(comorb_cov_sympt_num,10))

hypertension_num <- comorb_cov_sympt_num %>%
  dplyr::filter(Morbidity == "High Blood Pressure (hypertension)") %>%
  dplyr::arrange(desc(Count))


start_date <- as.Date("2020-04-09")
end_date <- as.Date("2020-05-09")

title_stub <- "Hypertension across symptoms\n"
start_date_title <- format(as.Date(start_date), format = "%d %B %Y")
end_date_title <- format(as.Date(end_date), format = "%d %B %Y")
chart_title <- paste0(title_stub, start_date_title, " to ", end_date_title)



plot_hypertension_sympt <-
    ggplot2::ggplot(hypertension_num, ggplot2::aes(x = Symptom, y = Count, fill = Count)) +
    ggplot2::coord_flip() +
    ggplot2::geom_bar(stat = "identity", position = "dodge") +
    ggplot2::scale_fill_viridis_c(option = "magma", direction = -1) +
    ggplot2::scale_x_discrete(limits = unique(hypertension_num$Symptom)) +
    #ggplot2::theme(legend.position = "bottom") +
    #ggplot2::guides(fill = ggplot2::guide_legend(nrow = 3)) +
    ggplot2::theme_minimal() +
    ggplot2::labs( title = chart_title,
                   subtitle = "Counts of patients with comorbidities accross symptoms",
                   y = "Counts",
                   x = "Symptoms",
                   caption = "Source: Dataset - Your.md Dataset") +
    ggplot2::theme(
      axis.title.y = ggplot2::element_text(margin = ggplot2::margin(
        t = 0,
        r = 21,
        b = 0,
        l = 0
      )),
      plot.title = ggplot2::element_text(size = 10, face = "bold"),
      plot.subtitle = ggplot2::element_text(size = 9),
      axis.text.x = ggplot2::element_text(angle = 55, hjust = 1)
    )


plotly::ggplotly(plot_hypertension_sympt)
obesity_num <- comorb_cov_sympt_num %>%
  dplyr::filter(Morbidity == "Obesity") %>%
  dplyr::arrange(desc(Count))


title_stub <- "Obesity across symptoms\n"
start_date_title <- format(as.Date(start_date), format = "%d %B %Y")
end_date_title <- format(as.Date(end_date), format = "%d %B %Y")
chart_title <- paste0(title_stub, start_date_title, " to ", end_date_title)


plot_obesity_sympt <-
    ggplot2::ggplot(obesity_num, ggplot2::aes(x = Symptom, y = Count, fill = Count)) +
    ggplot2::coord_flip() +
    ggplot2::geom_bar(stat = "identity", position = "dodge") +
    ggplot2::scale_fill_viridis_c(option = "magma", direction = -1) +
    ggplot2::scale_x_discrete(limits = unique(obesity_num$Symptom)) +
    #ggplot2::theme(legend.position = "bottom") +
    #ggplot2::guides(fill = ggplot2::guide_legend(nrow = 3)) +
    ggplot2::theme_minimal() +
    ggplot2::labs( title = chart_title,
                   subtitle = "Counts of patients with comorbidities accross symptoms",
                   y = "Counts",
                   x = "Symptoms",
                   caption = "Source: Dataset - Your.md Dataset") +
    ggplot2::theme(
      axis.title.y = ggplot2::element_text(margin = ggplot2::margin(
        t = 0,
        r = 21,
        b = 0,
        l = 0
      )),
      plot.title = ggplot2::element_text(size = 10, face = "bold"),
      plot.subtitle = ggplot2::element_text(size = 9),
      axis.text.x = ggplot2::element_text(angle = 55, hjust = 1)
    )


plotly::ggplotly(plot_obesity_sympt)
asthma_num <- comorb_cov_sympt_num %>%
  dplyr::filter(Morbidity == "Asthma (managed with an inhaler)") %>%
  dplyr::arrange(desc(Count))


title_stub <- "Asthma across symptoms\n"
start_date_title <- format(as.Date(start_date), format = "%d %B %Y")
end_date_title <- format(as.Date(end_date), format = "%d %B %Y")
chart_title <- paste0(title_stub, start_date_title, " to ", end_date_title)


plot_asthma_sympt <-
   ggplot2::ggplot(asthma_num, ggplot2::aes(x = Symptom, y = Count, fill = Count)) +
    ggplot2::coord_flip() +
    ggplot2::geom_bar(stat = "identity", position = "dodge") +
    ggplot2::scale_fill_viridis_c(option = "magma", direction = -1) +
    ggplot2::scale_x_discrete(limits = unique(asthma_num$Symptom)) +
    #ggplot2::theme(legend.position = "bottom") +
    #ggplot2::guides(fill = ggplot2::guide_legend(nrow = 3)) +
    ggplot2::theme_minimal() +
    ggplot2::labs( title = chart_title,
                   subtitle = "Counts of patients with comorbidities accross symptoms",
                   y = "Counts",
                   x = "Symptoms",
                   caption = "Source: Dataset - Your.md Dataset") +
    ggplot2::theme(
      axis.title.y = ggplot2::element_text(margin = ggplot2::margin(
        t = 0,
        r = 21,
        b = 0,
        l = 0
      )),
      plot.title = ggplot2::element_text(size = 10, face = "bold"),
      plot.subtitle = ggplot2::element_text(size = 9),
      axis.text.x = ggplot2::element_text(angle = 55, hjust = 1)
    )


plotly::ggplotly(plot_asthma_sympt)
lung_num <- comorb_cov_sympt_num %>%
  dplyr::filter(Morbidity == "Long-Standing Lung Condition") %>%
  dplyr::arrange(desc(Count))


title_stub <- "Long-Standing Lung Condition across symptoms\n"
start_date_title <- format(as.Date(start_date), format = "%d %B %Y")
end_date_title <- format(as.Date(end_date), format = "%d %B %Y")
chart_title <- paste0(title_stub, start_date_title, " to ", end_date_title)


plot_lung_sympt <-
    ggplot2::ggplot(lung_num, ggplot2::aes(x = Symptom, y = Count, fill = Count)) +
    ggplot2::coord_flip() +
    ggplot2::geom_bar(stat = "identity", position = "dodge") +
    ggplot2::scale_fill_viridis_c(option = "magma", direction = -1) +
    ggplot2::scale_x_discrete(limits = unique(lung_num$Symptom)) +
    #ggplot2::theme(legend.position = "bottom") +
    #ggplot2::guides(fill = ggplot2::guide_legend(nrow = 3)) +
    ggplot2::theme_minimal() +
    ggplot2::labs( title = chart_title,
                   subtitle = "Counts of patients with comorbidities accross symptoms",
                   y = "Counts",
                   x = "Symptoms",
                   caption = "Source: Dataset - Your.md Dataset") +
    ggplot2::theme(
      axis.title.y = ggplot2::element_text(margin = ggplot2::margin(
        t = 0,
        r = 21,
        b = 0,
        l = 0
      )),
      plot.title = ggplot2::element_text(size = 10, face = "bold"),
      plot.subtitle = ggplot2::element_text(size = 9),
      axis.text.x = ggplot2::element_text(angle = 55, hjust = 1)
    )


plotly::ggplotly(plot_lung_sympt)
heart_num <- comorb_cov_sympt_num %>%
  dplyr::filter(Morbidity == "Long-Standing Heart Disease") %>%
  dplyr::arrange(desc(Count))


title_stub <- "Long-Standing Heart Disease across symptoms\n"
start_date_title <- format(as.Date(start_date), format = "%d %B %Y")
end_date_title <- format(as.Date(end_date), format = "%d %B %Y")
chart_title <- paste0(title_stub, start_date_title, " to ", end_date_title)


plot_heart_sympt <-
    ggplot2::ggplot(heart_num, ggplot2::aes(x = Symptom, y = Count, fill = Count)) +
    ggplot2::coord_flip() +
    ggplot2::geom_bar(stat = "identity", position = "dodge") +
    ggplot2::scale_fill_viridis_c(option = "magma", direction = -1) +
    ggplot2::scale_x_discrete(limits = unique(heart_num$Symptom)) +
    #ggplot2::theme(legend.position = "bottom") +
    #ggplot2::guides(fill = ggplot2::guide_legend(nrow = 3)) +
    ggplot2::theme_minimal() +
    ggplot2::labs( title = chart_title,
                   subtitle = "Counts of patients with comorbidities accross symptoms",
                   y = "Counts",
                   x = "Symptoms",
                   caption = "Source: Dataset - Your.md Dataset") +
    ggplot2::theme(
      axis.title.y = ggplot2::element_text(margin = ggplot2::margin(
        t = 0,
        r = 21,
        b = 0,
        l = 0
      )),
      plot.title = ggplot2::element_text(size = 10, face = "bold"),
      plot.subtitle = ggplot2::element_text(size = 9),
      axis.text.x = ggplot2::element_text(angle = 55, hjust = 1)
    )


plotly::ggplotly(plot_heart_sympt)
kidney_num <- comorb_cov_sympt_num %>%
  dplyr::filter(Morbidity == "Long-Standing Kidney Disease") %>%
  dplyr::arrange(desc(Count))


title_stub <- "Long-Standing Kidney Disease across symptoms\n"
start_date_title <- format(as.Date(start_date), format = "%d %B %Y")
end_date_title <- format(as.Date(end_date), format = "%d %B %Y")
chart_title <- paste0(title_stub, start_date_title, " to ", end_date_title)


plot_kidney_sympt <-
    ggplot2::ggplot(kidney_num, ggplot2::aes(x = Symptom, y = Count, fill = Count)) +
    ggplot2::coord_flip() +
    ggplot2::geom_bar(stat = "identity", position = "dodge") +
    ggplot2::scale_fill_viridis_c(option = "magma", direction = -1) +
    ggplot2::scale_x_discrete(limits = unique(kidney_num$Symptom)) +
    #ggplot2::theme(legend.position = "bottom") +
    #ggplot2::guides(fill = ggplot2::guide_legend(nrow = 3)) +
    ggplot2::theme_minimal() +
    ggplot2::labs( title = chart_title,
                   subtitle = "Counts of patients with comorbidities accross symptoms",
                   y = "Counts",
                   x = "Symptoms",
                   caption = "Source: Dataset - Your.md Dataset") +
    ggplot2::theme(
      axis.title.y = ggplot2::element_text(margin = ggplot2::margin(
        t = 0,
        r = 21,
        b = 0,
        l = 0
      )),
      plot.title = ggplot2::element_text(size = 10, face = "bold"),
      plot.subtitle = ggplot2::element_text(size = 9),
      axis.text.x = ggplot2::element_text(angle = 55, hjust = 1)
    )


plotly::ggplotly(plot_kidney_sympt)
liver_num <- comorb_cov_sympt_num %>%
  dplyr::filter(Morbidity == "Long-Standing Liver Disease") %>%
  dplyr::arrange(desc(Count))


title_stub <- "Long-Standing Liver Disease across symptoms\n"
start_date_title <- format(as.Date(start_date), format = "%d %B %Y")
end_date_title <- format(as.Date(end_date), format = "%d %B %Y")
chart_title <- paste0(title_stub, start_date_title, " to ", end_date_title)


plot_liver_num <-
    ggplot2::ggplot(liver_num, ggplot2::aes(x = Symptom, y = Count, fill = Count)) +
    ggplot2::coord_flip() +
    ggplot2::geom_bar(stat = "identity", position = "dodge") +
    ggplot2::scale_fill_viridis_c(option = "magma", direction = -1) +
    ggplot2::scale_x_discrete(limits = unique(liver_num$Symptom)) +
    #ggplot2::theme(legend.position = "bottom") +
    #ggplot2::guides(fill = ggplot2::guide_legend(nrow = 3)) +
    ggplot2::theme_minimal() +
    ggplot2::labs( title = chart_title,
                   subtitle = "Counts of patients with comorbidities accross symptoms",
                   y = "Counts",
                   x = "Symptoms",
                   caption = "Source: Dataset - Your.md Dataset") +
    ggplot2::theme(
      axis.title.y = ggplot2::element_text(margin = ggplot2::margin(
        t = 0,
        r = 21,
        b = 0,
        l = 0
      )),
      plot.title = ggplot2::element_text(size = 10, face = "bold"),
      plot.subtitle = ggplot2::element_text(size = 9),
      axis.text.x = ggplot2::element_text(angle = 55, hjust = 1)
    )


plotly::ggplotly(plot_liver_num)
diab_type_one_num <- comorb_cov_sympt_num %>%
  dplyr::filter(Morbidity == "Diabetes Type 1 (controlled by insulin)") %>%
  dplyr::arrange(desc(Count))


title_stub <- "Diabetes Type 1 across symptoms\n"
start_date_title <- format(as.Date(start_date), format = "%d %B %Y")
end_date_title <- format(as.Date(end_date), format = "%d %B %Y")
chart_title <- paste0(title_stub, start_date_title, " to ", end_date_title)


plot_diab_1_num <-
    ggplot2::ggplot(diab_type_one_num, ggplot2::aes(x = Symptom, y = Count, fill = Count)) +
    ggplot2::coord_flip() +
    ggplot2::geom_bar(stat = "identity", position = "dodge") +
    ggplot2::scale_fill_viridis_c(option = "magma", direction = -1) +
    ggplot2::scale_x_discrete(limits = unique(diab_type_one_num$Symptom)) +
    #ggplot2::theme(legend.position = "bottom") +
    #ggplot2::guides(fill = ggplot2::guide_legend(nrow = 3)) +
    ggplot2::theme_minimal() +
    ggplot2::labs( title = chart_title,
                   subtitle = "Counts of patients with comorbidities accross symptoms",
                   y = "Counts",
                   x = "Symptoms",
                   caption = "Source: Dataset - Your.md Dataset") +
    ggplot2::theme(
      axis.title.y = ggplot2::element_text(margin = ggplot2::margin(
        t = 0,
        r = 21,
        b = 0,
        l = 0
      )),
      plot.title = ggplot2::element_text(size = 10, face = "bold"),
      plot.subtitle = ggplot2::element_text(size = 9),
      axis.text.x = ggplot2::element_text(angle = 55, hjust = 1)
    )


plotly::ggplotly(plot_diab_1_num)
diab_type_two_num <- comorb_cov_sympt_num %>%
  dplyr::filter(Morbidity == "Diabetes Type 2") %>%
  dplyr::arrange(desc(Count))


title_stub <- "Diabetes Type 2 across symptoms\n"
start_date_title <- format(as.Date(start_date), format = "%d %B %Y")
end_date_title <- format(as.Date(end_date), format = "%d %B %Y")
chart_title <- paste0(title_stub, start_date_title, " to ", end_date_title)


plot_diab_2_num <-
    ggplot2::ggplot(diab_type_two_num, ggplot2::aes(x = Symptom, y = Count, fill = Count)) +
    ggplot2::coord_flip() +
    ggplot2::geom_bar(stat = "identity", position = "dodge") +
    ggplot2::scale_fill_viridis_c(option = "magma", direction = -1) +
    ggplot2::scale_x_discrete(limits = unique(diab_type_two_num$Symptom)) +
    #ggplot2::theme(legend.position = "bottom") +
    #ggplot2::guides(fill = ggplot2::guide_legend(nrow = 3)) +
    ggplot2::theme_minimal() +
    ggplot2::labs( title = chart_title,
                   subtitle = "Counts of patients with comorbidities accross symptoms",
                   y = "Counts",
                   x = "Symptoms",
                   caption = "Source: Dataset - Your.md Dataset") +
    ggplot2::theme(
      axis.title.y = ggplot2::element_text(margin = ggplot2::margin(
        t = 0,
        r = 21,
        b = 0,
        l = 0
      )),
      plot.title = ggplot2::element_text(size = 10, face = "bold"),
      plot.subtitle = ggplot2::element_text(size = 9),
      axis.text.x = ggplot2::element_text(angle = 55, hjust = 1)
    )


plotly::ggplotly(plot_diab_2_num)

II. Association analysis.

Second stage of analysis attempts to analyse whether there are difference in Covid-19 symptom manifestation in different comorbidity groups. As mentioned above, I am stratifying respondents with showing symptoms and those who tested positive. Yet, before we go into actual analysis, correlation of variables is undertaken next.

With the first step being achieved, second step focuses on whether there are differences in Covid-19 symptom in different comorbidity groups. Univariate analysis and multivariate logistic regression has aid the second stage analysis. Before the actual analysis it is worth having a look on how I've stratified the patients for the study.

For the second part, in order to reach the goal of this study, I have stratified patients into two different groups. Patients who showed symptoms but haven't been tested and patients that have been Covid tested positive. The rest of respondents were filtered out of the dataset as this group isn't a relevant group. With the stratification in place, we've got from 60812 respondents, with the stratification of patients, I've got to 9436 respondents. Nevertheless, 8752 are showing symptoms whilst those tested are 707. The groups were recoded into tested and not tested. It is worth mentioning on the class imbalance in this dataset.

data_categ_nosev <- readr::read_csv("/Users/gabrielburcea/Rprojects/data/data_no_sev_stats.csv")

data_categ_nosev <- data_categ_nosev %>%
  dplyr::filter(covid_tested != 'none') %>%
  dplyr::mutate(status_cv = dplyr::case_when(covid_tested == 'showing symptoms' ~ 0,
                                             covid_tested == 'positive' ~ 1)) %>%
  tidyr::drop_na()

show_sympt_positive <- data_categ_nosev %>%
  dplyr::select(id, status_cv) %>%
  dplyr::group_by(status_cv) %>%
  dplyr::tally()

knitr::kable(show_sympt_positive)

How many male and female we have in our dataset? There are 5083 male accounting for 53 percent whilst female are 4321 accounting for 45 percent. Also, we have very low percent of other group.

data_categ_nosev <- readr::read_csv("/Users/gabrielburcea/Rprojects/data/data_no_sev_stats.csv")

gender_tb <- data_categ_nosev %>%
  dplyr::select(ID, gender) %>%
  dplyr::group_by(gender) %>%
  dplyr::tally() %>%
  dplyr::mutate(percent = n/sum(n))

gender_tb

bp <- ggplot2::ggplot(gender_tb, ggplot2::aes(x = "", y = percent, fill = gender)) + 
  ggplot2::geom_bar(width = 1, stat = "identity")

pie <- bp + ggplot2::coord_polar("y", start = 0) + 
  ggplot2::scale_fill_brewer(palette = "Blues") +
  ggplot2::theme(axis.text.x = ggplot2::element_blank())

pie
gender_pie_numbers <- cvindia::gender_distrib(data = data_categ_nosev, start_date = as.Date("2020-04-09"), 
                                                    end_date = as.Date("2020-05-09"), plot_chart = FALSE)

knitr::kable(gender_pie_numbers)

Overview of groups of respondents with symptoms and tested positive.

Looking at respondents who are covid positive and the symptoms.

cov_sympt_plot <- cvindia::covid_positive(data = data_categ_nosev,start_date = as.Date("2020-04-09", tz = "Europe/London"),
                              end_date = as.Date("2020-05-06",tz = "Europe/London"), plot_chart = TRUE)

cov_sympt_plot
cov_sympt_plot <- cvindia::covid_positive(data = data_categ_nosev,start_date = as.Date("2020-04-09", tz = "Europe/London"),
                              end_date = as.Date("2020-05-06",tz = "Europe/London"), plot_chart = FALSE)

knitr::kable(dplyr::top_n(cov_sympt_plot, 10))

Looking at respondents who declared showing symptoms yet no covid test were taken.

show_symp <- cvindia::show_symptoms_cov(data = data_categ_nosev , start_date = as.Date("2020-04-09", tz = "Europe/London"),
                              end_date = as.Date("2020-05-06",tz = "Europe/London"), plot_chart = TRUE)

show_symp
show_symp_num <- cvindia::show_symptoms_cov(data = data_categ_nosev , start_date = as.Date("2020-04-09", tz = "Europe/London"),
                              end_date = as.Date("2020-05-06",tz = "Europe/London"), plot_chart = FALSE)

show_symp_num <- knitr::kable(dplyr::top_n(show_symp_num, 10))

show_symp_num
library(tidymodels)
library(readr)
library(dplyr)
library(corrr)
library(tidyverse)
library(conflicted)
library(tidymodels)
library(ggrepel)
library(corrplot)
library(dplyr)
library(corrr) 
library(themis)
library(rsample)
library(caret)
library(forcats)
library(rcompanion)
library(MASS)
library(pROC)
library(ROCR)
library(data.table)
library(ggplot2)

conflict_prefer("step", "stats")

### ML for Mixed - categorical and numerica data ####
###########################################################################################
### Transforming variables in factor format ###############################################
#data_categ_nosev$country <- as.factor(data_categ_nosev$country)
data_categ_nosev$chills <- as.factor(data_categ_nosev$chills)
data_categ_nosev$cough  <- as.factor(data_categ_nosev$cough)
data_categ_nosev$gender <- as.factor(data_categ_nosev$gender)
data_categ_nosev$covid_tested <- as.factor(data_categ_nosev$covid_tested)
data_categ_nosev$diarrhoea  <- as.factor(data_categ_nosev$diarrhoea)
data_categ_nosev$fatigue  <- as.factor(data_categ_nosev$fatigue)
data_categ_nosev$headache   <- as.factor(data_categ_nosev$headache)
data_categ_nosev$loss_smell_taste   <- as.factor(data_categ_nosev$loss_smell_taste)
data_categ_nosev$muscle_ache  <- as.factor(data_categ_nosev$muscle_ache)
data_categ_nosev$nasal_congestion <- as.factor(data_categ_nosev$nasal_congestion)
data_categ_nosev$nausea_vomiting  <- as.factor(data_categ_nosev$nausea_vomiting)
data_categ_nosev$self_diagnosis <- as.factor(data_categ_nosev$self_diagnosis)
data_categ_nosev$shortness_breath <- as.factor(data_categ_nosev$shortness_breath)
data_categ_nosev$sore_throat <- as.factor(data_categ_nosev$sore_throat)
data_categ_nosev$sputum <- as.factor(data_categ_nosev$sputum)
data_categ_nosev$temperature  <- as.factor(data_categ_nosev$temperature)
data_categ_nosev$health_care_worker <- as.factor(data_categ_nosev$health_care_worker)
data_categ_nosev$care_home_worker <- as.factor(data_categ_nosev$care_home_worker)
### Transforming variables in numerical format  #########################################################
data_categ_nosev$asthma   <- as.factor(data_categ_nosev$asthma)
data_categ_nosev$diabetes_type_two <- as.factor(data_categ_nosev$diabetes_type_two)
data_categ_nosev$obesity <- as.factor(data_categ_nosev$obesity)
data_categ_nosev$hypertension  <- as.factor(data_categ_nosev$hypertension)
data_categ_nosev$heart_disease  <- as.factor(data_categ_nosev$heart_disease)
data_categ_nosev$kidney_disease <- as.factor(data_categ_nosev$kidney_disease)
data_categ_nosev$lung_condition <- as.factor(data_categ_nosev$lung_condition)
data_categ_nosev$liver_disease <- as.factor(data_categ_nosev$liver_disease)
data_categ_nosev$diabetes_type_one <- as.factor(data_categ_nosev$diabetes_type_one)
data_categ_nosev$how_unwell <- as.numeric(data_categ_nosev$how_unwell)
data_categ_nosev$number_days_symptoms <- as.numeric(data_categ_nosev$number_days_symptoms)
data_categ_nosev$age <- as.numeric(data_categ_nosev$age)
data_categ_nosev$age_band <- as.factor(data_categ_nosev$age_band)
data_categ_nosev$temperature <- as.factor(data_categ_nosev$temperature)
#data_categ_nosev$covid_tested <- as.factor(data_categ_nose

Correlations

Correlations matrix is done on numerical variables. However, I have transformed the categorical variables into numerical ones, as I cannot correlate all categorical variables once. Additionally, the correlation is done on original dataset and not on the 9436 datasets since a lot of respondents that declared they have no covid have reported some covid symptoms. However, this has to be discussed more in detail and wait for a bigger dataset.

From the correlation matrix, it is noticed, fatigue and muscle ache seem to be correlated, but only with 0.43550, the highest correlation. Yet, for the highest correlation, it is not even passing the 0.5. However, I choose to take out of the analysis the fatigue variable.

###################################
#######Corelations ################


data_num_with_severity <- read_csv("/Users/gabrielburcea/Rprojects/data/data_numerical.csv")


data_num_with_severity$ID <- NULL
data_num_with_severity$covid_tested <- NULL
data_num_with_severity$country <- NULL
data_num_with_severity$gender <- NULL
data_num_with_severity$age <- NULL

correlation_num_dt <- data_num_with_severity %>% 
dplyr::select_if(is.numeric) %>%
  corrr::correlate(x = .,
                   method = "spearman", 
                   quiet = TRUE) %>%
  corrr::rearrange(x =., 
                   method = "MDS", 
                   absolute = FALSE)

knitr::kable(dplyr::top_n(correlation_num_dt,10))


rplot_labs_v1 <- ggplot2::labs(
  title = "Correlations - symptoms and comorbidities", 
  subtitle = "Symptoms and Commorbidities", 
  caption = "Data accessed from Your.md")

#As we can see, the hue of the color and the size of the point indicate the level of the correlation

correlated_vars_plot <- correlation_num_dt %>%
  corrr::rplot(rdf = ., shape = 19, 
               colors = c("yellow", 
                          "purple")) +
  theme(axis.text.x = element_text(angle = 60, hjust = 1)) +
  rplot_labs_v1

correlated_vars_plot
library(tidymodels)
library(readr)
library(dplyr)
library(corrr)
library(tidyverse)
library(conflicted)
library(tidymodels)
library(ggrepel)
library(corrplot)
library(dplyr)
library(corrr) 
library(themis)
library(rsample)
library(caret)
library(forcats)
library(rcompanion)
library(MASS)
library(pROC)
library(ROCR)
library(data.table)
library(ggplot2)
library(tidyverse)
library(rms)



conflict_prefer("step", "stats")
data_categ_nosev <- readr::read_csv("/Users/gabrielburcea/Rprojects/stats_data_whole/data_categ_no_sev.csv")


level_key_temperature <- 
  c("38.1-39" = "38.2-39",
    "38.1-39" = "Temperature",
    '37' = 'No')

data_categ_nosev <- readr::read_csv("/Users/gabrielburcea/Rprojects/stats_data_whole/data_categ_no_sev.csv")

data_categ_nosev <- data_categ_nosev %>%
  dplyr::filter(covid_tested != 'none') %>%
  dplyr::mutate(status_cv = dplyr::case_when(
                                             covid_tested == 'showing symptoms' ~ 0,
                                             covid_tested == 'positive' ~ 1), 
                number_comorbidities = dplyr::case_when(number_morbidities == 1 ~ 'one', 
                                                        number_morbidities >= 2 ~ 'more than 2'), 
                temperature = forcats::fct_recode(temperature, !!!level_key_temperature)) %>%

  tidyr::drop_na()

data_categ_nosev <- data_categ_nosev %>% dplyr::rename(id = ID)

show_sympt_positive <- data_categ_nosev %>%
  dplyr::select(id, status_cv) %>%
  dplyr::group_by(status_cv) %>%
  dplyr::tally()

knitr::kable(show_sympt_positive)

data_categ_nosev$gender <- as.factor(data_categ_nosev$gender)
#data_categ_nosev$country <- as.factor(data_categ_nosev$country)
data_categ_nosev$chills <- as.factor(data_categ_nosev$chills)
data_categ_nosev$cough  <- as.factor(data_categ_nosev$cough)
data_categ_nosev$diarrhoea  <- as.factor(data_categ_nosev$diarrhoea)
data_categ_nosev$fatigue  <- as.factor(data_categ_nosev$fatigue)
data_categ_nosev$headache   <- as.factor(data_categ_nosev$headache)
data_categ_nosev$loss_smell_taste   <- as.factor(data_categ_nosev$loss_smell_taste)
data_categ_nosev$muscle_ache  <- as.factor(data_categ_nosev$muscle_ache)
data_categ_nosev$nasal_congestion <- as.factor(data_categ_nosev$nasal_congestion)
data_categ_nosev$nausea_vomiting  <- as.factor(data_categ_nosev$nausea_vomiting)
data_categ_nosev$self_diagnosis <- as.factor(data_categ_nosev$self_diagnosis)
data_categ_nosev$shortness_breath <- as.factor(data_categ_nosev$shortness_breath)
data_categ_nosev$sore_throat <- as.factor(data_categ_nosev$sore_throat)
data_categ_nosev$sputum <- as.factor(data_categ_nosev$sputum)
data_categ_nosev$temperature  <- as.factor(data_categ_nosev$temperature)
data_categ_nosev$health_care_worker <- as.factor(data_categ_nosev$health_care_worker)
data_categ_nosev$care_home_worker <- as.factor(data_categ_nosev$care_home_worker)

data_categ_nosev$asthma   <- as.factor(data_categ_nosev$asthma)
data_categ_nosev$diabetes_type_two <- as.factor(data_categ_nosev$diabetes_type_two)
data_categ_nosev$obesity <- as.factor(data_categ_nosev$obesity)
data_categ_nosev$hypertension  <- as.factor(data_categ_nosev$hypertension)
data_categ_nosev$heart_disease  <- as.factor(data_categ_nosev$heart_disease)
data_categ_nosev$kidney_disease <- as.factor(data_categ_nosev$kidney_disease)
data_categ_nosev$lung_condition <- as.factor(data_categ_nosev$lung_condition)
data_categ_nosev$liver_disease <- as.factor(data_categ_nosev$liver_disease)
data_categ_nosev$diabetes_type_one <- as.factor(data_categ_nosev$diabetes_type_one)
data_categ_nosev$how_unwell <- as.factor(data_categ_nosev$how_unwell)
data_categ_nosev$age <- as.factor(data_categ_nosev$age)
data_categ_nosev$covid_tested <- as.factor(data_categ_nosev$covid_tested)
obesity_data <- data_categ_nosev %>%
  dplyr::select(obesity, gender, chills, cough, diarrhoea, headache, loss_smell_taste, muscle_ache, 
                nasal_congestion, nausea_vomiting, shortness_breath, sore_throat, sputum, temperature) %>%
  tidyr::drop_na()

Univariate analysis

Univariate analysis reveal that cough, diarhea, muscle ache, nausea and vomiting, sputum, temperature are associated factors in obese patients.

obesity_chills <- glm(obesity ~ chills, data = obesity_data, family = binomial)

summary(obesity_chills)


coef_obesity_chills <- coef(obesity_chills)

# odd ratios 
odd_ratios_ob_ch <- exp(coef_obesity_chills)
odd_ratios_ob_ch 
obesity_cough <- glm(obesity ~ cough, data = obesity_data, family = binomial)

summary(obesity_cough)


coef_obesity_cough <- coef(obesity_cough)

odd_ratios_ob_co <- exp(coef_obesity_cough)

odd_ratios_ob_co 
obesity_diarrhea <- glm(obesity ~ diarrhoea, data = obesity_data, family = binomial)

summary(obesity_diarrhea)


# get coef
coef_ob_diarrhea <- coef(obesity_diarrhea)

# odd ratios
odd_ratio_ob_diar <- exp(coef_ob_diarrhea)

odd_ratio_ob_diar
obesity_headache <- glm(obesity ~ headache, data = obesity_data, family = binomial)

summary(obesity_headache)

coef_ob_head <- coef(obesity_headache)

odd_ratio_ob_head <- exp(coef_ob_head)

odd_ratio_ob_head
obesity_loss_smell <- glm(obesity ~ loss_smell_taste, data = obesity_data, family = binomial)


summary(obesity_loss_smell)



coef_ob_loss_smell <- coef(obesity_loss_smell)

odd_ratio_ob_los <- exp(coef_ob_loss_smell)

odd_ratio_ob_los
library(fmsb)

obesity_muscle_ache <- glm(obesity ~ muscle_ache, data = obesity_data, family = binomial)

summary(obesity_muscle_ache)




coef_ob_muscle_ac <- coef(obesity_muscle_ache)

odd_ratio_ob_los <- exp(coef_ob_muscle_ac)

odd_ratio_ob_los
obesity_nasal_cong <- glm(obesity ~ nasal_congestion, data = obesity_data, family = binomial)

summary(obesity_nasal_cong)


coef_ob_nas_cong <- coef(obesity_nasal_cong)

odd_ratio_ob_nas_cong <- exp(coef_ob_nas_cong)

odd_ratio_ob_nas_cong
obesity_nausea_vomitting <- glm(obesity ~ nausea_vomiting, data = obesity_data, family = binomial)

summary(obesity_nausea_vomitting)


coef_ob_naus_vom <- coef(obesity_nausea_vomitting)

odd_ratio_ob_naus_vom <- exp(coef_ob_naus_vom)

odd_ratio_ob_naus_vom
obesity_short_breath <- glm(obesity ~ shortness_breath, data = obesity_data, family = binomial)

summary(obesity_short_breath)

coef_ob_sh_br <- coef(obesity_short_breath)


odd_ratio_ob_sh_br <- exp(coef_ob_sh_br)

odd_ratio_ob_sh_br
obesity_sore_thr <- glm(obesity ~ sore_throat, data = obesity_data, family = binomial)

summary(obesity_sore_thr)

coef_ob_sore_thr <- coef(obesity_sore_thr)


odd_ratio_ob_sore_thr <- exp(coef_ob_sore_thr)

odd_ratio_ob_sore_thr
obesity_sputum <- glm(obesity ~ sputum, data = obesity_data, family = binomial)


summary(obesity_sputum)


coef_ob_sp <- coef(obesity_sputum)

odd_ratio_ob_sp <- exp(coef_ob_sp)

odd_ratio_ob_sp

vif(obesity_sputum)
obesity_temperature <- glm(obesity ~ temperature, data = obesity_data, family = binomial)


summary(obesity_temperature)

coef_ob_temp <- coef(obesity_temperature)

odd_ratio_ob_temp <- exp(coef_ob_temp)

odd_ratio_ob_temp

vif(obesity_temperature)

Adding all variables that showed an association with obesity.

When adjusting for all variables, patients showing covid-19 symptoms/of patients with positive covid test, the results show strong evidence for an association between variables such as cough, diarrhea, sputum and temperature (37.5-38) (p ≤ 0.05) in obese respondents. When adjusting for all variables,in patients showing covid-19 symptpms/of patients with positive covid test, in obese respondents there was: - 15 % increase in odds of experiencing cough compared to those who aren't obese - 35 % increase in diarrhea compared to those who aren't obese - 23 % increase in soutum compared to those who aren't obese - 24 % decrease ??? in 37.5-38 temperature compared to those who do not suffer of heart disease

obesity_model <- glm(obesity ~ cough + diarrhoea + shortness_breath + temperature, data = obesity_data, family = binomial)

summary(obesity_model)


# odds ratio and 95% CL

exp(cbind(OR = coef(obesity_model), confint(obesity_model)))

vif(obesity_model)

asthma_data <- data_categ_nosev %>%
  dplyr::select(asthma, diabetes_type_one, diabetes_type_two, obesity, hypertension, heart_disease, lung_condition, 
                liver_disease, kidney_disease, gender, age, chills, cough, diarrhoea, headache, loss_smell_taste, muscle_ache, 
                nasal_congestion, nausea_vomiting, shortness_breath, sore_throat, sputum, temperature, covid_tested) %>%
  tidyr::drop_na()
asthma_covid <- asthma_data %>%
  dplyr::select(asthma, covid_tested) %>%
  dplyr::group_by(asthma, covid_tested) %>%
  dplyr::tally()

asthma_covid

Univariate analysis for asthma

Unvivariate analysis reveal chills, cough, diarrhea, headache, muschle ache, sore throat, nausea and vomiting, shortness of breath, sputum, temperature are the associated Covid symptoms in respondents with asthma.

  1. Asthma and chills
asthma_chills <- glm(asthma ~ chills, data = asthma_data, family = binomial)

summary(asthma_chills)


coef_asthma_chills <- coef(asthma_chills)

# odd ratios 
odd_ratios_ob_ch <- exp(coef_asthma_chills)
odd_ratios_ob_ch 
  1. Asthma and cough
asthma_cough <- glm(asthma ~ cough, data = asthma_data, family = binomial)

summary(asthma_cough)


coef_asthma_cough <- coef(asthma_cough)

odd_ratios_ob_co <- exp(coef_asthma_cough)

odd_ratios_ob_co 
  1. Asthma and diarrhea
asthma_diarrhea <- glm(asthma ~ diarrhoea, data = asthma_data, family = binomial)

summary(asthma_diarrhea)


# get coef
coef_ob_diarrhea <- coef(asthma_diarrhea)

# odd ratios
odd_ratio_ob_diar <- exp(coef_ob_diarrhea)

odd_ratio_ob_diar
  1. Asthma and headache
asthma_headache <- glm(asthma ~ headache, data = asthma_data, family = binomial)

summary(asthma_headache)

coef_ob_head <- coef(asthma_headache)

odd_ratio_ob_head <- exp(coef_ob_head)

odd_ratio_ob_head
  1. Asthma and loss of smell and taste
asthma_loss_smell <- glm(asthma ~ loss_smell_taste, data = asthma_data, family = binomial)


summary(asthma_loss_smell)

coef_ob_loss_smell <- coef(asthma_loss_smell)

odd_ratio_ob_los <- (exp(coef_ob_loss_smell)-1)*100

odd_ratio_ob_los
  1. Asthma and muscle ache
asthma_muscle_ache <- glm(asthma ~ muscle_ache, data = asthma_data, family = binomial)

summary(asthma_muscle_ache)

coef_ob_muscle_ac <- coef(asthma_muscle_ache)

odd_ratio_ob_los <- exp(coef_ob_muscle_ac)

odd_ratio_ob_los
  1. Asthma and nasal congestion
asthma_nasal_cong <- glm(asthma ~ nasal_congestion, data = asthma_data, family = binomial)

summary(asthma_nasal_cong)


coef_ob_nas_cong <- coef(asthma_nasal_cong)

odd_ratio_ob_nas_cong <- exp(coef_ob_nas_cong)

odd_ratio_ob_nas_cong
  1. Athma and nausea and vomiting
asthma_nausea_vomitting <- glm(asthma ~ nausea_vomiting, data = asthma_data, family = binomial)

summary(asthma_nausea_vomitting)


coef_ob_naus_vom <- coef(asthma_nausea_vomitting)

odd_ratio_ob_naus_vom <- exp(coef_ob_naus_vom)

odd_ratio_ob_naus_vom
  1. Asthma and shortness of breath
asthma_short_breath <- glm(asthma ~ shortness_breath, data = asthma_data, family = binomial)

summary(asthma_short_breath)

coef_ob_sh_br <- coef(asthma_short_breath)


odd_ratio_ob_sh_br <- exp(coef_ob_sh_br)

odd_ratio_ob_sh_br

  1. Asthma and sore throat
asthma_sore_thr <- glm(asthma ~ sore_throat, data = asthma_data, family = binomial)

summary(asthma_sore_thr)

coef_ob_sore_thr <- coef(asthma_sore_thr)


odd_ratio_ob_sore_thr <- exp(coef_ob_sore_thr)

odd_ratio_ob_sore_thr
  1. Asthma and sputum
asthma_sputum <- glm(asthma ~ sputum, data = asthma_data, family = binomial)


summary(asthma_sputum)


coef_ob_sp <- coef(asthma_sputum)

odd_ratio_ob_sp <- exp(coef_ob_sp)

odd_ratio_ob_sp


vif(asthma_sputum)
  1. Asthma and temperature
asthma_temperature <- glm(asthma ~ temperature, data = asthma_data, family = binomial)

summary(asthma_temperature)

Multivariable Logistic Regression for Asthma

Adding all symptoms that showed to be associated in asthma patients.

When adjusting for all variables, patients showing covid-19 symptoms/of patients with positive covid test, the results show strong evidence for an association between variables such as chills, nausea and vomiting, shortness of breath and temperature (38.1-39; 39.1-40) (p ≤ 0.05) in patients with asthma.

When adjusting for all variables,in patients showing covid-19 symptoms/of patients with positive covid test, in patients with asthma there was:

asthma_model <- glm(asthma ~ chills + cough + diarrhoea + headache + muscle_ache + nausea_vomiting 
                    + shortness_breath + sputum + temperature, data = asthma_data, family = binomial)

summary(asthma_model)

Odd Ratios and 95 % CL for Asthma model

# odds ratios and 95% CL

exp(cbind(OR = coef(asthma_model), confint(asthma_model)))
diabetes_type_one_data <- data_categ_nosev %>%
  dplyr::select(diabetes_type_one, gender,  chills, cough, diarrhoea, headache, loss_smell_taste, muscle_ache, 
                nasal_congestion, nausea_vomiting, shortness_breath, sore_throat, sputum, temperature) %>%
  tidyr::drop_na()

Univariate analysis for diabetes type one

The univariate analysis real that symptoms such as headaches, nasal congestion, sore throat, temperature (39.1-41) are associated with diabetes type one.

diabetes_type_one_chills <- glm(diabetes_type_one ~ chills, data = diabetes_type_one_data, family = binomial)

summary(diabetes_type_one_chills)


coef_diabetes_type_one_chills <- coef(diabetes_type_one_chills)

# odd ratios 
odd_ratios_ob_ch <- exp(coef_diabetes_type_one_chills)
odd_ratios_ob_ch 
  1. Diabetes type one with cough
diabetes_type_one_cough <- glm(diabetes_type_one ~ cough, data = diabetes_type_one_data, family = binomial)

summary(diabetes_type_one_cough)


coef_diabetes_type_one_cough <- coef(diabetes_type_one_cough)

odd_ratios_ob_co <- exp(coef_diabetes_type_one_cough)

odd_ratios_ob_co 
  1. Diabetes type one with diarrhea
diabetes_type_one_diarrhea <- glm(diabetes_type_one ~ diarrhoea, data = diabetes_type_one_data, family = binomial)

summary(diabetes_type_one_diarrhea)


# get coef
coef_ob_diarrhea <- coef(diabetes_type_one_diarrhea)

# odd ratios
odd_ratio_ob_diar <- exp(coef_ob_diarrhea)

odd_ratio_ob_diar
  1. Diabetes type one with headache
diabetes_type_one_headache <- glm(diabetes_type_one ~ headache, data = diabetes_type_one_data, family = binomial)

summary(diabetes_type_one_headache)

coef_ob_head <- coef(diabetes_type_one_headache)

odd_ratio_ob_head <- exp(coef_ob_head)
odd_ratio_ob_head
  1. Diabetes type one with loss of smell and taste
diabetes_type_one_loss_smell <- glm(diabetes_type_one ~ loss_smell_taste, data = diabetes_type_one_data, family = binomial)


summary(diabetes_type_one_loss_smell)

coef_ob_loss_smell <- coef(diabetes_type_one_loss_smell)

odd_ratio_ob_los <- exp(coef_ob_loss_smell)

odd_ratio_ob_los
  1. Diabetes type one with with muscle ache
diabetes_type_one_muscle_ache <- glm(diabetes_type_one ~ muscle_ache, data = diabetes_type_one_data, family = binomial)

summary(diabetes_type_one_muscle_ache)

coef_ob_muscle_ac <- coef(diabetes_type_one_muscle_ache)

odd_ratio_ob_los <- exp(coef_ob_muscle_ac)

odd_ratio_ob_los
  1. Diabetes type one with nasal congestion
diabetes_type_one_nasal_cong <- glm(diabetes_type_one ~ nasal_congestion, data = diabetes_type_one_data, family = binomial)

summary(diabetes_type_one_nasal_cong)


coef_ob_nas_cong <- coef(diabetes_type_one_nasal_cong)

odd_ratio_ob_nas_cong <- exp(coef_ob_nas_cong)

odd_ratio_ob_nas_cong
  1. Diabetes type one with nausea and vomiting
diabetes_type_one_nausea_vomitting <- glm(diabetes_type_one ~ nausea_vomiting, data = diabetes_type_one_data, family = binomial)

summary(diabetes_type_one_nausea_vomitting)


coef_ob_naus_vom <- coef(diabetes_type_one_nausea_vomitting)

odd_ratio_ob_naus_vom <- exp(coef_ob_naus_vom)

odd_ratio_ob_naus_vom
  1. Diabetest type one with shortness of breath
diabetes_type_one_short_breath <- glm(diabetes_type_one ~ shortness_breath, data = diabetes_type_one_data, family = binomial)

summary(diabetes_type_one_short_breath)

coef_ob_sh_br <- coef(diabetes_type_one_short_breath)


odd_ratio_ob_sh_br <- exp(coef_ob_sh_br)

odd_ratio_ob_sh_br
  1. Diabetes type one with sore throat
diabetes_type_one_sore_thr <- glm(diabetes_type_one ~ sore_throat, data = diabetes_type_one_data, family = binomial)

summary(diabetes_type_one_sore_thr)

coef_ob_sore_thr <- coef(diabetes_type_one_sore_thr)


odd_ratio_ob_sore_thr <- exp(coef_ob_sore_thr)

odd_ratio_ob_sore_thr
  1. Diabetes type one with sputum
diabetes_type_one_sputum <- glm(diabetes_type_one ~ sputum, data = diabetes_type_one_data, family = binomial)


summary(diabetes_type_one_sputum)


coef_ob_sp <- coef(diabetes_type_one_sputum)

odd_ratio_ob_sp <- exp(coef_ob_sp)

odd_ratio_ob_sp

vif(diabetes_type_one_sputum)
  1. Diabetes type one with temperature
diabetes_type_one_temperature <- glm(diabetes_type_one ~ temperature, data = diabetes_type_one_data, family = binomial)


summary(diabetes_type_one_temperature)

coef_ob_temp <- coef(diabetes_type_one_temperature)

odd_ratio_ob_temp <- exp(coef_ob_temp)

odd_ratio_ob_temp

vif(diabetes_type_one_temperature)

Multivariate analysis for diabetest type one

When adding all variables that showed an association with the heart disease model, the model shows something different.

When adjusting for all variables, patients showing covid-19 symptoms/of patients with positive covid test, the results show strong evidence for an association between variables such as headaches and temperature(39.1-41) (p ≤ 0.01) in patients with diabetes type one.
When adjusting for all variables,in patients showing covid-19 symptpms/of patients with positive covid test, in respondent with diabetes type one there was: - 54 % decrease in odds of experiencing headaches compared to those who do not suffer of diabetes type one - 406 % increase in temperature compared to those who do not suffer of heart disease

diabetes_type_one_model <- glm(diabetes_type_one ~ chills + cough + headache + loss_smell_taste + muscle_ache + nausea_vomiting +
                     temperature, data = diabetes_type_one_data, family = binomial)

summary(diabetes_type_one_model)

Odd Ratios and 95 % CL for Diabetes Model

# odds ratio and 95% CL

exp(cbind(OR = coef(diabetes_type_one_model), confint(diabetes_type_one_model)))

vif(diabetes_type_one_model)
diabetes_type_two_data <- data_categ_nosev %>%
  dplyr::select(diabetes_type_two, gender, age, chills, cough, diarrhoea, headache, loss_smell_taste, muscle_ache, 
                nasal_congestion, nausea_vomiting, shortness_breath, sore_throat, sputum, temperature) %>%
  tidyr::drop_na()

Univariate analysis for diabetes type one

Univariate analysis reveal Covid symptoms such as headaches, shortness of breath, sore throat, sputum and temperature are associated wit diabetes type two respondents.

  1. Diabetes type two
diabetes_type_two_chills <- glm(diabetes_type_two ~ chills, data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_chills)


coef_diabetes_type_two_chills <- coef(diabetes_type_two_chills)

# odd ratios 
odd_ratios_ob_ch <- exp(coef_diabetes_type_two_chills)
odd_ratios_ob_ch 
diabetes_type_two_cough <- glm(diabetes_type_two ~ cough, data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_cough)


coef_diabetes_type_two_cough <- coef(diabetes_type_two_cough)

odd_ratios_ob_co <- exp(coef_diabetes_type_two_cough)

odd_ratios_ob_co 
diabetes_type_two_diarrhea <- glm(diabetes_type_two ~ diarrhoea, data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_diarrhea)


# get coef
coef_ob_diarrhea <- coef(diabetes_type_two_diarrhea)

# odd ratios
odd_ratio_ob_diar <- exp(coef_ob_diarrhea)

odd_ratio_ob_diar
diabetes_type_two_headache <- glm(diabetes_type_two ~ headache, data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_headache)

coef_ob_head <- coef(diabetes_type_two_headache)

odd_ratio_ob_head <- exp(coef_ob_head)

odd_ratio_ob_head
diabetes_type_two_loss_smell <- glm(diabetes_type_two ~ loss_smell_taste, data = diabetes_type_two_data, family = binomial)


summary(diabetes_type_two_loss_smell)

coef_ob_loss_smell <- coef(diabetes_type_two_loss_smell)

odd_ratio_ob_los <- exp(coef_ob_loss_smell)

odd_ratio_ob_los
diabetes_type_two_muscle_ache <- glm(diabetes_type_two ~ muscle_ache, data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_muscle_ache)

coef_ob_muscle_ac <- coef(diabetes_type_two_muscle_ache)

odd_ratio_ob_los <- exp(coef_ob_muscle_ac)

odd_ratio_ob_los
diabetes_type_two_nasal_cong <- glm(diabetes_type_two ~ nasal_congestion, data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_nasal_cong)


coef_ob_nas_cong <- coef(diabetes_type_two_nasal_cong)

odd_ratio_ob_nas_cong <- exp(coef_ob_nas_cong)

odd_ratio_ob_nas_cong
diabetes_type_two_nausea_vomitting <- glm(diabetes_type_two ~ nausea_vomiting, data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_nausea_vomitting)


coef_ob_naus_vom <- coef(diabetes_type_two_nausea_vomitting)

odd_ratio_ob_naus_vom <- exp(coef_ob_naus_vom)

odd_ratio_ob_naus_vom
diabetes_type_two_short_breath <- glm(diabetes_type_two ~ shortness_breath, data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_short_breath)

coef_ob_sh_br <- coef(diabetes_type_two_short_breath)


odd_ratio_ob_sh_br <- exp(coef_ob_sh_br)

odd_ratio_ob_sh_br
diabetes_type_two_sore_thr <- glm(diabetes_type_two ~ sore_throat, data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_sore_thr)

coef_ob_sore_thr <- coef(diabetes_type_two_sore_thr)


odd_ratio_ob_sore_thr <- exp(coef_ob_sore_thr)

odd_ratio_ob_sore_thr
diabetes_type_two_sputum <- glm(diabetes_type_two ~ sputum, data = diabetes_type_two_data, family = binomial)


summary(diabetes_type_two_sputum)


coef_ob_sp <- coef(diabetes_type_two_sputum)

odd_ratio_ob_sp <- exp(coef_ob_sp)

odd_ratio_ob_sp

vif(diabetes_type_two_sputum)
diabetes_type_two_temperature <- glm(diabetes_type_two ~ temperature, data = diabetes_type_two_data, family = binomial)


summary(diabetes_type_two_temperature)

coef_ob_temp <- coef(diabetes_type_two_temperature)

odd_ratio_ob_temp <- exp(coef_ob_temp)

odd_ratio_ob_temp

vif(diabetes_type_two_temperature)

Multivariable analysis for diabetes type two

Adding all variables that showed an association with diabetes type two variable.

When adjusting for all variables, patients showing covid-19 symptoms/of patients with positive covid test, the results show strong evidence for an association between variables such as headache, shortness of breath, sore throat, sputum, temperature age and gender (p ≤ 0.05) in patients with heart disease.
When adjusting for all variables,in patients showing covid-19 symptpms/of patients with positive covid test, in patients with diabetes type two there was: - 26 % decrease in odds of experiencing headaches - 21 % decrease in shortness of breath - 28 % decrease in sputum compared to those who do not suffer of patientss of diabetes type two - 50 % increase in 37.5-38 temperature compared to those who do not suffer of diabetes type two - 87 % increase in 38.1-39 temperature compared to those who do not suffer of diabetes type two - 222 % increase ?? in 39.1-41 temperature - 79 % for gender ?

diabetes_type_two_model <- glm(diabetes_type_two ~ headache + shortness_breath + sore_throat + sputum + temperature, 
                               data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_model)

Odd Ratios and 95 % CL for

exp(cbind(OR = coef(diabetes_type_two_model), confint(diabetes_type_two_model)))

vif(diabetes_type_two_model)
diabetes_type_two_data <- data_categ_nosev %>%
  dplyr::select(diabetes_type_two, gender, age, age_band, chills, cough, diarrhoea, headache, loss_smell_taste, muscle_ache, 
                nasal_congestion, nausea_vomiting, shortness_breath, sore_throat, sputum, temperature) %>%
  tidyr::drop_na()

Univariate analysis for diabetes type one

Univariate analysis reveal Covid symptoms such as headaches, shortness of breath, sore throat, sputum and temperature are associated wit diabetes type two respondents.

  1. Diabetes type two with chills
diabetes_type_two_chills <- glm(diabetes_type_two ~ chills, data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_chills)


coef_diabetes_type_two_chills <- coef(diabetes_type_two_chills)

# odd ratios 
odd_ratios_ob_ch <- exp(coef_diabetes_type_two_chills)
odd_ratios_ob_ch 
  1. Diabetes type two with cough
diabetes_type_two_cough <- glm(diabetes_type_two ~ cough, data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_cough)


coef_diabetes_type_two_cough <- coef(diabetes_type_two_cough)

odd_ratios_ob_co <- exp(coef_diabetes_type_two_cough)

odd_ratios_ob_co 
  1. Diabetes type two with diarrhea
diabetes_type_two_diarrhea <- glm(diabetes_type_two ~ diarrhoea, data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_diarrhea)


# get coef
coef_ob_diarrhea <- coef(diabetes_type_two_diarrhea)

# odd ratios
odd_ratio_ob_diar <- exp(coef_ob_diarrhea)

odd_ratio_ob_diar
  1. Diabetes type two with headache
diabetes_type_two_headache <- glm(diabetes_type_two ~ headache, data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_headache)

coef_ob_head <- coef(diabetes_type_two_headache)

odd_ratio_ob_head <- exp(coef_ob_head)

odd_ratio_ob_head
  1. Diabetes type two with loss of smell and taste
diabetes_type_two_loss_smell <- glm(diabetes_type_two ~ loss_smell_taste, data = diabetes_type_two_data, family = binomial)


summary(diabetes_type_two_loss_smell)

coef_ob_loss_smell <- coef(diabetes_type_two_loss_smell)

odd_ratio_ob_los <- exp(coef_ob_loss_smell)

odd_ratio_ob_los
  1. Diabetes tyoe tow with muscle ache
diabetes_type_two_muscle_ache <- glm(diabetes_type_two ~ muscle_ache, data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_muscle_ache)

coef_ob_muscle_ac <- coef(diabetes_type_two_muscle_ache)

odd_ratio_ob_los <- exp(coef_ob_muscle_ac)

odd_ratio_ob_los
  1. Diabetes type two with nasal congestion
diabetes_type_two_nasal_cong <- glm(diabetes_type_two ~ nasal_congestion, data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_nasal_cong)


coef_ob_nas_cong <- coef(diabetes_type_two_nasal_cong)

odd_ratio_ob_nas_cong <- exp(coef_ob_nas_cong)

odd_ratio_ob_nas_cong
  1. Diabetes type two with nausea and vomiting
diabetes_type_two_nausea_vomitting <- glm(diabetes_type_two ~ nausea_vomiting, data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_nausea_vomitting)


coef_ob_naus_vom <- coef(diabetes_type_two_nausea_vomitting)

odd_ratio_ob_naus_vom <- exp(coef_ob_naus_vom)

odd_ratio_ob_naus_vom
  1. Diabetes type two with shortness of breath
diabetes_type_two_short_breath <- glm(diabetes_type_two ~ shortness_breath, data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_short_breath)

coef_ob_sh_br <- coef(diabetes_type_two_short_breath)


odd_ratio_ob_sh_br <- exp(coef_ob_sh_br)

odd_ratio_ob_sh_br
  1. Diabetes type two with sore throat
diabetes_type_two_sore_thr <- glm(diabetes_type_two ~ sore_throat, data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_sore_thr)

coef_ob_sore_thr <- coef(diabetes_type_two_sore_thr)


odd_ratio_ob_sore_thr <- exp(coef_ob_sore_thr)

odd_ratio_ob_sore_thr
  1. Diabetes type two with sputum
diabetes_type_two_sputum <- glm(diabetes_type_two ~ sputum, data = diabetes_type_two_data, family = binomial)


summary(diabetes_type_two_sputum)


coef_ob_sp <- coef(diabetes_type_two_sputum)

odd_ratio_ob_sp <- exp(coef_ob_sp)

odd_ratio_ob_sp

vif(diabetes_type_two_sputum)
  1. Diabetes type two with temperature
diabetes_type_two_temperature <- glm(diabetes_type_two ~ temperature, data = diabetes_type_two_data, family = binomial)


summary(diabetes_type_two_temperature)

coef_ob_temp <- coef(diabetes_type_two_temperature)

odd_ratio_ob_temp <- exp(coef_ob_temp)

odd_ratio_ob_temp

vif(diabetes_type_two_temperature)

Multivariable analysis for diabetes type two

Adding all variables that showed an association with diabetes type two variable.

When adjusting for all variables, patients showing covid-19 symptoms/of patients with positive covid test, the results show strong evidence for an association between variables such as headache, shortness of breath, sore throat, sputum, temperature age and gender (p ≤ 0.05) in patients with heart disease.
When adjusting for all variables,in patients showing covid-19 symptpms/of patients with positive covid test, in patients with diabetes type two there was: - 26 % decrease in odds of experiencing headaches - 21 % decrease in shortness of breath - 28 % decrease in sputum compared to those who do not suffer of patientss of diabetes type two - 50 % increase in 37.5-38 temperature compared to those who do not suffer of diabetes type two - 87 % increase in 38.1-39 temperature compared to those who do not suffer of diabetes type two - 222 % increase ?? in 39.1-41 temperature - 79 % for gender ?

diabetes_type_two_model <- glm(diabetes_type_two ~ headache + shortness_breath + sore_throat + sputum + temperature, 
                               data = diabetes_type_two_data, family = binomial)

summary(diabetes_type_two_model)


exp(cbind(OR = coef(diabetes_type_two_model), confint(diabetes_type_two_model)))
vif(diabetes_type_two_model)
heart_data <- data_categ_nosev %>%
  dplyr::select(heart_disease, gender, age, chills, cough, diarrhoea, headache, loss_smell_taste, muscle_ache, 
                nasal_congestion, nausea_vomiting, shortness_breath, sore_throat, sputum, temperature) %>%
  tidyr::drop_na()

Univariate analysis

Univariate analysis reveal Covid symptoms such as chills, loss of smell and taste, diarhoea, muscle ache , nausea and vomiting, shortness of breath, sputum and temperature(39.1-41) are associated with heart disease.

  1. Heart disease and chills
heart_chills <- glm(heart_disease ~ chills, data = heart_data, family = binomial)

summary(heart_chills)


coef_heart_chills <- coef(heart_chills)

# odd ratios 
odd_ratios_ob_ch <- exp(coef_heart_chills)
odd_ratios_ob_ch 
  1. Heart disease and cough
heart_cough <- glm(heart_disease ~ cough, data = heart_data, family = binomial)

summary(heart_cough)


coef_heart_cough <- coef(heart_cough)

odd_ratios_ob_co <- exp(coef_heart_cough)

odd_ratios_ob_co 
  1. Heart disease and diarrhea
heart_diarrhea <- glm(heart_disease ~ diarrhoea, data = heart_data, family = binomial)

summary(heart_diarrhea)


# get coef
coef_ob_diarrhea <- coef(heart_diarrhea)

# odd ratios
odd_ratio_ob_diar <- exp(coef_ob_diarrhea)

odd_ratio_ob_diar
  1. Heart disease and headache
heart_headache <- glm(heart_disease ~ headache, data = heart_data, family = binomial)

summary(heart_headache)

coef_ob_head <- coef(heart_headache)

odd_ratio_ob_head <- exp(coef_ob_head)

odd_ratio_ob_head
  1. Heart disease and loss of smell and taste
heart_loss_smell <- glm(heart_disease ~ loss_smell_taste, data = heart_data, family = binomial)


summary(heart_loss_smell)

coef_ob_loss_smell <- coef(heart_loss_smell)

odd_ratio_ob_los <- exp(coef_ob_loss_smell)

odd_ratio_ob_los
  1. Heart disease and muscle ache.
heart_muscle_ache <- glm(heart_disease ~ muscle_ache, data = heart_data, family = binomial)

summary(heart_muscle_ache)

coef_ob_muscle_ac <- coef(heart_muscle_ache)

odd_ratio_ob_los <- exp(coef_ob_muscle_ac)

odd_ratio_ob_los
  1. Heart disease and nasal congestion
heart_nasal_cong <- glm(heart_disease ~ nasal_congestion, data = heart_data, family = binomial)

summary(heart_nasal_cong)


coef_ob_nas_cong <- coef(heart_nasal_cong)

odd_ratio_ob_nas_cong <- exp(coef_ob_nas_cong)

odd_ratio_ob_nas_cong
  1. Heart disease and nausea and vomiting
heart_nausea_vomitting <- glm(heart_disease ~ nausea_vomiting, data = heart_data, family = binomial)

summary(heart_nausea_vomitting)


coef_ob_naus_vom <- coef(heart_nausea_vomitting)

odd_ratio_ob_naus_vom <- exp(coef_ob_naus_vom)

odd_ratio_ob_naus_vom
  1. Heart disease and shortness of breath
heart_short_breath <- glm(heart_disease ~ shortness_breath, data = heart_data, family = binomial)

summary(heart_short_breath)

coef_ob_sh_br <- coef(heart_short_breath)


odd_ratio_ob_sh_br <- exp(coef_ob_sh_br)

odd_ratio_ob_sh_br
  1. Heart disease and sore throat
heart_sore_thr <- glm(heart_disease ~ sore_throat, data = heart_data, family = binomial)

summary(heart_sore_thr)

coef_ob_sore_thr <- coef(heart_sore_thr)


odd_ratio_ob_sore_thr <- exp(coef_ob_sore_thr)

odd_ratio_ob_sore_thr

11.Heart disease and sputum

heart_sputum <- glm(heart_disease ~ sputum, data = heart_data, family = binomial)


summary(heart_sputum)


coef_ob_sp <- coef(heart_sputum)

odd_ratio_ob_sp <- exp(coef_ob_sp)

odd_ratio_ob_sp

vif(heart_sputum)
  1. Heart disease and temperature
heart_temperature <- glm(heart_disease ~ temperature, data = heart_data, family = binomial)


summary(heart_temperature)

coef_ob_temp <- coef(heart_temperature)

odd_ratio_ob_temp <- exp(coef_ob_temp)

odd_ratio_ob_temp

vif(heart_temperature)

Multivariate analysis for heart disease

Adding all variables that showed an association with the heart disease model.

When adjusting for all variables, patients showing covid-19 symptoms/of patients with positive covid test, the results show strong evidence for an association between variables such as chills, nausea and vomiting, shortness of breath and temperature (38.1-39; 39.1-40) (p ≤ 0.05) in patients with heart disease.

When adjusting for all variables,in patients showing covid-19 symptpms/of patients with positive covid test, in patients with heart disease there was: - 94 % increase in odds of experiencing chills compared to those who do not suffer of heart diesease disease - 95 % increase in nausea and vomiting compared to those who do not suffer of heart disease - 44 % increase in shortness of breath compared to those who do not suffer of heart disease - 7 % increase in 37.5-38 temperature compared to those who do not suffer of heart disease - 229 % increase in 39.1-41 temperature

heart_model <- glm(heart_disease ~ chills + diarrhoea + loss_smell_taste +muscle_ache + nausea_vomiting + shortness_breath +
                     temperature + sputum  + shortness_breath, data = heart_data, family = binomial)

summary(heart_model)

exp(cbind(OR = coef(heart_model), confint(heart_model)))

vif(heart_model)
hypertension_data <- data_categ_nosev %>%
  dplyr::select(hypertension, gender, age, age_band, chills, cough, diarrhoea, headache, loss_smell_taste, muscle_ache, 
                nasal_congestion, nausea_vomiting, shortness_breath, sore_throat, sputum, temperature) %>%
  tidyr::drop_na()

Univariate analysis for hypertension and Covid symptoms

Univariate analysis reveal cough, diarrhea, muscle ache, shortness of breath, sputum and temperature (38.1-39) are symptoms associated in patients with hypertension.

1.Hypertension and chills

hypertension_chills <- glm(hypertension ~ chills, data = hypertension_data, family = binomial)

summary(hypertension_chills)


coef_hypertension_chills <- coef(hypertension_chills)

# odd ratios 
odd_ratios_ob_ch <- exp(coef_hypertension_chills)
odd_ratios_ob_ch 
  1. Hypertension and cough
hypertension_cough <- glm(hypertension ~ cough, data = hypertension_data, family = binomial)

summary(hypertension_cough)


coef_hypertension_cough <- coef(hypertension_cough)

odd_ratios_ob_co <- exp(coef_hypertension_cough)

odd_ratios_ob_co 
  1. Hypertension and diarrhea
hypertension_diarrhea <- glm(hypertension ~ diarrhoea, data = hypertension_data, family = binomial)

summary(hypertension_diarrhea)


# get coef
coef_ob_diarrhea <- coef(hypertension_diarrhea)

# odd ratios
odd_ratio_ob_diar <- exp(coef_ob_diarrhea)

odd_ratio_ob_diar
  1. Hypertension and headache
hypertension_headache <- glm(hypertension ~ headache, data = hypertension_data, family = binomial)

summary(hypertension_headache)

coef_ob_head <- coef(hypertension_headache)

odd_ratio_ob_head <- exp(coef_ob_head)

odd_ratio_ob_head
  1. Hypertension and loss of smell and taste
hypertension_loss_smell <- glm(hypertension ~ loss_smell_taste, data = hypertension_data, family = binomial)


summary(hypertension_loss_smell)

coef_ob_loss_smell <- coef(hypertension_loss_smell)

odd_ratio_ob_los <- exp(coef_ob_loss_smell)

odd_ratio_ob_los
  1. Hypertension and muscle ache
hypertension_muscle_ache <- glm(hypertension ~ muscle_ache, data = hypertension_data, family = binomial)

summary(hypertension_muscle_ache)

coef_ob_muscle_ac <- coef(hypertension_muscle_ache)

odd_ratio_ob_los <- exp(coef_ob_muscle_ac)

odd_ratio_ob_los
  1. Hypertension and nasal congestion
hypertension_nasal_cong <- glm(hypertension ~ nasal_congestion, data = hypertension_data, family = binomial)

summary(hypertension_nasal_cong)


coef_ob_nas_cong <- coef(hypertension_nasal_cong)

odd_ratio_ob_nas_cong <- exp(coef_ob_nas_cong)

odd_ratio_ob_nas_cong
  1. Hypertension and nausea and vomiting
hypertension_nausea_vomitting <- glm(hypertension ~ nausea_vomiting, data = hypertension_data, family = binomial)

summary(hypertension_nausea_vomitting)


coef_ob_naus_vom <- coef(hypertension_nausea_vomitting)

odd_ratio_ob_naus_vom <- exp(coef_ob_naus_vom)

odd_ratio_ob_naus_vom
  1. Hypertension and shortness of breath
hypertension_short_breath <- glm(hypertension ~ shortness_breath, data = hypertension_data, family = binomial)

summary(hypertension_short_breath)

coef_ob_sh_br <- coef(hypertension_short_breath)


odd_ratio_ob_sh_br <- exp(coef_ob_sh_br)

odd_ratio_ob_sh_br
  1. Hypertension and sore throat
hypertension_sore_thr <- glm(hypertension ~ sore_throat, data = hypertension_data, family = binomial)

summary(hypertension_sore_thr)

coef_ob_sore_thr <- coef(hypertension_sore_thr)


odd_ratio_ob_sore_thr <- exp(coef_ob_sore_thr)

odd_ratio_ob_sore_thr
  1. Hypertension and sputum
hypertension_sputum <- glm(hypertension ~ sputum, data = hypertension_data, family = binomial)


summary(hypertension_sputum)


coef_ob_sp <- coef(hypertension_sputum)

odd_ratio_ob_sp <- exp(coef_ob_sp)

odd_ratio_ob_sp

vif(hypertension_sputum)
  1. Hypertension and temperature
hypertension_temperature <- glm(hypertension ~ temperature, data = hypertension_data, family = binomial)


summary(hypertension_temperature)

coef_ob_temp <- coef(hypertension_temperature)

odd_ratio_ob_temp <- exp(coef_ob_temp)

odd_ratio_ob_temp

vif(hypertension_temperature)

Multivariable analysis for hypertension

Adding all variables that showed an association with the hypertension variable.

When adjusting for all variables, patients showing covid-19 symptoms/of patients with positive covid test, the results show strong evidence for an association between variables such as cough, muscle ache, shortness of breath, sputum and temperature (37.1- 38 ; 38.1-39) (p ≤ 0.05) in patients with hypertension.
When adjusting for all variables,in patients showing covid-19 symptpms/of patients with positive covid test, in patients with hypertension there was: - 24 % increase in odds of experiencing cough compared to those who do not suffer of hypertension - 15 % increase in diarrhea compared to those who do not suffer of hypertension - 12 % increase in muscle ache compared to those who do not suffer of hypertension - 5 % increase in sputum compared to those who do not suffer of hypertension - 51 % increase in 38.1-39 in temperature to those who do not suffer of hypertension - 21 % increase in 39.1-41 in temperature compared to those who do not suffer of hypertension

cough, diarrhea, muscle ache, shortness of breath, sputum, temperature

hypertension_model <- glm(hypertension ~ cough + diarrhoea + muscle_ache + shortness_breath + sputum + temperature,  data = hypertension_data, family = binomial)

summary(hypertension_model)

exp(cbind(OR = coef(hypertension_model), confint(hypertension_model)))

vif(hypertension_model)
liver_data <- data_categ_nosev %>%
  dplyr::select(liver_disease, gender, age, chills, cough, diarrhoea, headache, loss_smell_taste, muscle_ache, 
                nasal_congestion, nausea_vomiting, shortness_breath, sore_throat, sputum, temperature) %>%
  tidyr::drop_na()

Univariate analysis for liver disease and Covid-19 symptoms

Asociated Covid symptoms in respondents with liver disease are: chills, diarhoea, loss of smell and taste, muscle ache, nasal congestion, nausea and vomiting, sputum and temperature

  1. Liver disease and chills
liver_chills <- glm(liver_disease ~ chills, data = liver_data, family = binomial)

summary(liver_chills)


coef_liver_chills <- coef(liver_chills)

# odd ratios 
odd_ratios_ob_ch <- exp(coef_liver_chills)
odd_ratios_ob_ch 
  1. Liver disease and cough
liver_cough <- glm(liver_disease ~ cough, data = liver_data, family = binomial)

summary(liver_cough)


coef_liver_cough <- coef(liver_cough)

odd_ratios_ob_co <- exp(coef_liver_cough)

odd_ratios_ob_co 
  1. Liver disease and diarhoea
liver_diarrhea <- glm(liver_disease ~ diarrhoea, data = liver_data, family = binomial)

summary(liver_diarrhea)


# get coef
coef_ob_diarrhea <- coef(liver_diarrhea)

# odd ratios
odd_ratio_ob_diar <- exp(coef_ob_diarrhea)

odd_ratio_ob_diar
  1. Liver disease and headache
liver_headache <- glm(liver_disease ~ headache, data = liver_data, family = binomial)

summary(liver_headache)

coef_ob_head <- coef(liver_headache)

odd_ratio_ob_head <- exp(coef_ob_head)

odd_ratio_ob_head
  1. Liver disease and loss of smell and taste
liver_loss_smell <- glm(liver_disease ~ loss_smell_taste, data = liver_data, family = binomial)


summary(liver_loss_smell)

coef_ob_loss_smell <- coef(liver_loss_smell)

odd_ratio_ob_los <- exp(coef_ob_loss_smell)

odd_ratio_ob_los
  1. Liver disease and muscle ache
liver_muscle_ache <- glm(liver_disease ~ muscle_ache, data = liver_data, family = binomial)

summary(liver_muscle_ache)

coef_ob_muscle_ac <- coef(liver_muscle_ache)

odd_ratio_ob_los <- exp(coef_ob_muscle_ac)

odd_ratio_ob_los
  1. Liver disease and nasal congestion
liver_nasal_cong <- glm(liver_disease ~ nasal_congestion, data = liver_data, family = binomial)

summary(liver_nasal_cong)


coef_ob_nas_cong <- coef(liver_nasal_cong)

odd_ratio_ob_nas_cong <- exp(coef_ob_nas_cong)

odd_ratio_ob_nas_cong
  1. Liver disease and vomiting
liver_nausea_vomitting <- glm(liver_disease ~ nausea_vomiting, data = liver_data, family = binomial)

summary(liver_nausea_vomitting)


coef_ob_naus_vom <- coef(liver_nausea_vomitting)

odd_ratio_ob_naus_vom <- exp(coef_ob_naus_vom)

odd_ratio_ob_naus_vom
  1. Liver disease and shortness of breath
liver_short_breath <- glm(liver_disease ~ shortness_breath, data = liver_data, family = binomial)

summary(liver_short_breath)

coef_ob_sh_br <- coef(liver_short_breath)


odd_ratio_ob_sh_br <- exp(coef_ob_sh_br)

odd_ratio_ob_sh_br
  1. Liver disease and sore throat
liver_sore_thr <- glm(liver_disease ~ sore_throat, data = liver_data, family = binomial)

summary(liver_sore_thr)

coef_ob_sore_thr <- coef(liver_sore_thr)


odd_ratio_ob_sore_thr <- exp(coef_ob_sore_thr)

odd_ratio_ob_sore_thr
  1. Liver disease and sputum
liver_sputum <- glm(liver_disease ~ sputum, data = liver_data, family = binomial)


summary(liver_sputum)


coef_ob_sp <- coef(liver_sputum)

odd_ratio_ob_sp <- exp(coef_ob_sp)

odd_ratio_ob_sp

vif(liver_sputum)
  1. Liver disease and temperature
liver_temperature <- glm(liver_disease ~ temperature, data = liver_data, family = binomial)


summary(liver_temperature)

coef_ob_temp <- coef(liver_temperature)

odd_ratio_ob_temp <- exp(coef_ob_temp)

odd_ratio_ob_temp

vif(liver_temperature)

Multivariate analysis for liver disease

When adjusting for the variables, in patients showing covid-19 symptoms/of patients with positive covid test the results show strong evidence for an association between variables such as chills, nausea and vomiting, and temperature (38.1-39; 39.1-40) (p ≤ 0.05) for patients with liver disease.
When adjusting for all variables,in patients showing covid-19 symptpms/of patients with positive covid test, in patients with liver disease there was: - 103 % increase in odds of experiencing chills compared to those who do not suffer of liver disease - 13 % increase in loss of smell and taste compared to those who do not suffer of liver disease - 15 % increase in muscle ache compred to those who do not suffer of liver disease - 272 % increase in nausea and vomiting compared to those who do not suffer of liver disease -17 % increase in nasal congestion compared to those who do not suffer of liver disease - 14 % increase in 37.5-38 temperature compared to those who do not suffer of liver disease - 98 % increase in 38.1-39 temperature compared to those who do not suffer of liver disease - 338 % increase ?? in 39.1-41 temperature - 21 % increase in sputum compared to those who do not suffer of liver disease

liver_model <- glm(liver_disease ~ chills + diarrhoea + loss_smell_taste + muscle_ache + nausea_vomiting + nasal_congestion + shortness_breath +
                     temperature + sputum, data = liver_data, family = binomial)

summary(liver_model)

exp(cbind(OR = coef(liver_model), confint(liver_model)))

vif(liver_model)
lung_condition_data <- data_categ_nosev %>%
  dplyr::select(lung_condition, gender, age, chills, cough, diarrhoea, headache, loss_smell_taste, muscle_ache, 
                nasal_congestion, nausea_vomiting, shortness_breath, sore_throat, sputum, temperature) %>%
  tidyr::drop_na()

Univariate analysis for lung condition and Covid-19 symptoms

Univariate logistic regression for lung condition and covid symptoms reveal: - nausea and vomiting, shortness of breath, sputum and 39.1- 41 temperature are statistically significant by looking at p values

  1. Lung condition and chills
lung_condition_chills <- glm(lung_condition ~ chills, data = lung_condition_data, family = binomial)

summary(lung_condition_chills)


coef_lung_condition_chills <- coef(lung_condition_chills)

# odd ratios 
odd_ratios_ob_ch <- exp(coef_lung_condition_chills)
odd_ratios_ob_ch 
  1. Lung condition and cough
lung_condition_cough <- glm(lung_condition ~ cough, data = lung_condition_data, family = binomial)

summary(lung_condition_cough)


coef_lung_condition_cough <- coef(lung_condition_cough)

odd_ratios_ob_co <- exp(coef_lung_condition_cough)

odd_ratios_ob_co 
  1. Lung condition and diarhoea
lung_condition_diarrhea <- glm(lung_condition ~ diarrhoea, data = lung_condition_data, family = binomial)

summary(lung_condition_diarrhea)


# get coef
coef_ob_diarrhea <- coef(lung_condition_diarrhea)

# odd ratios
odd_ratio_ob_diar <- exp(coef_ob_diarrhea)

odd_ratio_ob_diar
  1. Lung condition and headache
lung_condition_headache <- glm(lung_condition ~ headache, data = lung_condition_data, family = binomial)

summary(lung_condition_headache)

coef_ob_head <- coef(lung_condition_headache)

odd_ratio_ob_head <- exp(coef_ob_head)

odd_ratio_ob_head
  1. Lung condition and loss of smell and taste
lung_condition_loss_smell <- glm(lung_condition ~ loss_smell_taste, data = lung_condition_data, family = binomial)


summary(lung_condition_loss_smell)

coef_ob_loss_smell <- coef(lung_condition_loss_smell)

odd_ratio_ob_los <- exp(coef_ob_loss_smell)

odd_ratio_ob_los
  1. Lung condition and muscle ache
lung_condition_muscle_ache <- glm(lung_condition ~ muscle_ache, data = lung_condition_data, family = binomial)

summary(lung_condition_muscle_ache)

coef_ob_muscle_ac <- coef(lung_condition_muscle_ache)

odd_ratio_ob_los <- exp(coef_ob_muscle_ac)

odd_ratio_ob_los
  1. Lung condition and nasal congestion
lung_condition_nasal_cong <- glm(lung_condition ~ nasal_congestion, data = lung_condition_data, family = binomial)

summary(lung_condition_nasal_cong)


coef_ob_nas_cong <- coef(lung_condition_nasal_cong)

odd_ratio_ob_nas_cong <- exp(coef_ob_nas_cong)

odd_ratio_ob_nas_cong
  1. Lung condition and nausea and vomiting
lung_condition_nausea_vomitting <- glm(lung_condition ~ nausea_vomiting, data = lung_condition_data, family = binomial)

summary(lung_condition_nausea_vomitting)


coef_ob_naus_vom <- coef(lung_condition_nausea_vomitting)

odd_ratio_ob_naus_vom <- exp(coef_ob_naus_vom)

odd_ratio_ob_naus_vom
  1. Lung condition and shorthness of breath
lung_condition_short_breath <- glm(lung_condition ~ shortness_breath, data = lung_condition_data, family = binomial)

summary(lung_condition_short_breath)

coef_ob_sh_br <- coef(lung_condition_short_breath)


odd_ratio_ob_sh_br <- exp(coef_ob_sh_br)

odd_ratio_ob_sh_br
  1. Lung condition and sore throat
lung_condition_sore_thr <- glm(lung_condition ~ sore_throat, data = lung_condition_data, family = binomial)

summary(lung_condition_sore_thr)

coef_ob_sore_thr <- coef(lung_condition_sore_thr)


odd_ratio_ob_sore_thr <- exp(coef_ob_sore_thr)

odd_ratio_ob_sore_thr
  1. Lung condition and sputum
lung_condition_sputum <- glm(lung_condition ~ sputum, data = lung_condition_data, family = binomial)


summary(lung_condition_sputum)


coef_ob_sp <- coef(lung_condition_sputum)

odd_ratio_ob_sp <- exp(coef_ob_sp)

odd_ratio_ob_sp

vif(lung_condition_sputum)
  1. Lung condition and temperature
lung_condition_temperature <- glm(lung_condition ~ temperature, data = lung_condition_data, family = binomial)


summary(lung_condition_temperature)

coef_ob_temp <- coef(lung_condition_temperature)

odd_ratio_ob_temp <- exp(coef_ob_temp)

odd_ratio_ob_temp

vif(lung_condition_temperature)

Multivariate analysis for lung condition

Adding all variables that showed an association with the lung diseease.

When adjusting for all variables, patients showing covid-19 symptoms/of patients with positive covid test, the results show strong evidence for an association between variables such as nausea and vomiting, shortness of breath and temperature (38.1-39; 39.1-40) (p ≤ 0.05) and sputum in patients with lung disease.

When adjusting for the above variables, in patients showing covid-19 symptoms/of patients with positivie covid test, there was: - 88 % increase in the odds of experiencing nausea and vomiting compared to those who did not have lung disease; - 63 % increase in odds of experiencing shortness of breath compared to those who did not have lung disease; - 146 % increase in 39.1-41 temperature compared to those who did not have lung disease; - 33 % increase in the odds of experiencing sputum in patients with lung disease compared to those who did not have lung disease

lung_condition_model <- glm(lung_condition ~  nausea_vomiting +  shortness_breath +
                     temperature + sputum, data = lung_condition_data, family = binomial)

summary(lung_condition_model)

exp(cbind(OR = coef(lung_condition_model), confint(lung_condition_model)))


vif(lung_condition_model)
kidney_data <- data_categ_nosev %>%
  dplyr::select(kidney_disease, gender, age,  chills, cough, diarrhoea, headache, loss_smell_taste, muscle_ache, 
                nasal_congestion, nausea_vomiting, shortness_breath, sore_throat, sputum, temperature) %>%
  tidyr::drop_na()

Univariate analysis for kidney disease and Covid-19 symptoms

The most Covid symptoms that are associated with kidney disease are shorthness and breath and temperature.

  1. Kidney disease and chills
kidney_chills <- glm(kidney_disease ~ chills, data = kidney_data, family = binomial)

summary(kidney_chills)


coef_kidney_chills <- coef(kidney_chills)

# odd ratios 
odd_ratios_ob_ch <- exp(coef_kidney_chills)
odd_ratios_ob_ch 
  1. Kidney disease and cough
kidney_cough <- glm(kidney_disease ~ cough, data = kidney_data, family = binomial)

summary(kidney_cough)


coef_kidney_cough <- coef(kidney_cough)

odd_ratios_ob_co <- exp(coef_kidney_cough)

odd_ratios_ob_co 
  1. Kidney disease and diarrhoea
kidney_diarrhea <- glm(kidney_disease ~ diarrhoea, data = kidney_data, family = binomial)

summary(kidney_diarrhea)


# get coef
coef_ob_diarrhea <- coef(kidney_diarrhea)

# odd ratios
odd_ratio_ob_diar <- exp(coef_ob_diarrhea)

odd_ratio_ob_diar
  1. Kidney disease and headache
kidney_headache <- glm(kidney_disease ~ headache, data = kidney_data, family = binomial)

summary(kidney_headache)

coef_ob_head <- coef(kidney_headache)

odd_ratio_ob_head <- exp(coef_ob_head)

odd_ratio_ob_head
  1. Kidney disease and loss of smell and taste
kidney_loss_smell <- glm(kidney_disease ~ loss_smell_taste, data = kidney_data, family = binomial)


summary(kidney_loss_smell)

coef_ob_loss_smell <- coef(kidney_loss_smell)

odd_ratio_ob_los <- exp(coef_ob_loss_smell)

odd_ratio_ob_los
  1. Kidney disease and muscle ache
kidney_muscle_ache <- glm(kidney_disease ~ muscle_ache, data = kidney_data, family = binomial)

summary(kidney_muscle_ache)

coef_ob_muscle_ac <- coef(kidney_muscle_ache)

odd_ratio_ob_los <- exp(coef_ob_muscle_ac)

odd_ratio_ob_los
  1. Kidney disease and nasal congestion
kidney_nasal_cong <- glm(kidney_disease ~ nasal_congestion, data = kidney_data, family = binomial)

summary(kidney_nasal_cong)


coef_ob_nas_cong <- coef(kidney_nasal_cong)

odd_ratio_ob_nas_cong <- exp(coef_ob_nas_cong)

odd_ratio_ob_nas_cong
  1. Kidney disease and nausea and vomiting
kidney_nausea_vomitting <- glm(kidney_disease ~ nausea_vomiting, data = kidney_data, family = binomial)

summary(kidney_nausea_vomitting)


coef_ob_naus_vom <- coef(kidney_nausea_vomitting)

odd_ratio_ob_naus_vom <- exp(coef_ob_naus_vom)

odd_ratio_ob_naus_vom
  1. Kidney disease and shorthness of breath
kidney_short_breath <- glm(kidney_disease ~ shortness_breath, data = kidney_data, family = binomial)

summary(kidney_short_breath)

coef_ob_sh_br <- coef(kidney_short_breath)


odd_ratio_ob_sh_br <- exp(coef_ob_sh_br)

odd_ratio_ob_sh_br
  1. Kidney disease and sore throat
kidney_sore_thr <- glm(kidney_disease ~ sore_throat, data = kidney_data, family = binomial)

summary(kidney_sore_thr)

coef_ob_sore_thr <- coef(kidney_sore_thr)


odd_ratio_ob_sore_thr <- exp(coef_ob_sore_thr)

odd_ratio_ob_sore_thr
  1. Kidney disease and sputum
kidney_sputum <- glm(kidney_disease ~ sputum, data = kidney_data, family = binomial)


summary(kidney_sputum)


coef_ob_sp <- coef(kidney_sputum)

odd_ratio_ob_sp <- exp(coef_ob_sp)

odd_ratio_ob_sp

vif(kidney_sputum)
  1. Kidney disease and temperature
kidney_temperature <- glm(kidney_disease ~ temperature, data = kidney_data, family = binomial)


summary(kidney_temperature)

coef_ob_temp <- coef(kidney_temperature)

odd_ratio_ob_temp <- exp(coef_ob_temp)

odd_ratio_ob_temp

vif(kidney_temperature)

Multivariate analysis for Kidney disease

The selected variables for the final model are: shortness of breath, temperature.

In patients showing covid-19 symptoms/of patients with a positive covid test,when adjusting for all relevant variables, in respondents with kidney disease there was a: - 64% increase in the odds of experiencing shortness of breaht compared to those who do not have kidney disease - 33 % increase in the odds of experiencing 38.1 -39 temperature compared to those who do not have kidney disease - 305 % ?? not sure - increase in odds of experiencing 39.1-41 temperature compared to those who do not have kidney disease

kidney_model <- glm(kidney_disease ~  shortness_breath + temperature, data = kidney_data, family = binomial)

summary(kidney_model)

exp(cbind(OR = coef(kidney_model), confint(kidney_model)))
vif(kidney_model)


gabrielburcea/cvindia documentation built on Feb. 17, 2021, 3:31 a.m.