data <- read_csv("/Users/gabrielburcea/rprojects/data/your.md/cleaned_data_22092020.csv")
data_select <- data %>% dplyr::select(id, covid_tested, age_band, chills, cough, diarrhoea, fatigue, headache, muscle_ache, nasal_congestion, nausea_vomiting, shortness_breath, sore_throat, sputum, loss_appetite, chest_pain)
pivot_table <- data_select %>% tidyr::pivot_longer(cols = 4:16, names_to = "symptoms", values_to = "yes_no")
count_20_39_pos <- pivot_table %>% drop_na() %>% filter(age_band == "20-39" & covid_tested == "positive") %>% dplyr::group_by(symptoms, yes_no) %>% tally() %>% dplyr::mutate(percent = n/sum(n)*100) %>% dplyr::filter(yes_no != "No") %>% arrange(desc(n)) start_date = as.Date("2020-04-19") end_date = as.Date("2020-09-01") title_stub <- "SARS-Covid-19 positive in 20-39 age group category\n" start_date_title <- format(as.Date(start_date), format = "%d %B %Y") end_date_title <- format(as.Date(end_date), format = "%d %B %Y") chart_title <- paste0(title_stub, start_date_title, " to ", end_date_title) plot_count_20_30 <- ggplot2::ggplot(count_20_39_pos, ggplot2::aes(x = reorder(symptoms, - n), y = n, fill = n)) + ggplot2::coord_flip() + ggplot2::geom_bar(stat = "identity", position = "dodge") + ggplot2::scale_fill_viridis_c(option = "magma", direction = -1) + ggplot2::theme_bw() + ggplot2::labs(title = chart_title, subtitle = "Symptoms in 20-39 age group that tested positive", y = "Percent", x = "Symptoms", caption = "Source: Your.md Dataset, Global Digital Health") + ggplot2::theme(axis.title.y = ggplot2::element_text(margin = ggplot2::margin(t = 0, r = 21, b = 0, l = 0)), plot.title = ggplot2::element_text(size = 10, face = "bold"), plot.subtitle = ggplot2::element_text(size = 9), legend.position = "bottom", legend.box = "horizontal", axis.text.x = ggplot2::element_text(angle = 55, hjust = 1)) plot_count_20_30
knitr::kable(count_20_39_pos)
count_20_39_show_sympt <- pivot_table %>% drop_na() %>% filter(age_band == "20-39" & covid_tested == "showing symptoms") %>% dplyr::group_by(symptoms, yes_no) %>% tally() %>% dplyr::mutate(percent = n/sum(n)*100) %>% dplyr::filter(yes_no != "No") %>% arrange(desc(n)) start_date = as.Date("2020-04-19") end_date = as.Date("2020-09-01") title_stub <- "SARS-Covid-19 showing symptoms in 20-39 age group category\n" start_date_title <- format(as.Date(start_date), format = "%d %B %Y") end_date_title <- format(as.Date(end_date), format = "%d %B %Y") chart_title <- paste0(title_stub, start_date_title, " to ", end_date_title) plot_count_20_30 <- ggplot2::ggplot(count_20_39_show_sympt, ggplot2::aes(x = reorder(symptoms, - n), y = n, fill = n)) + ggplot2::coord_flip() + ggplot2::geom_bar(stat = "identity", position = "dodge") + ggplot2::scale_fill_viridis_c(option = "magma", direction = -1) + #ggplot2::scale_x_discrete(limits = unique(obesity_count$symptoms)) + #ggplot2::theme(legend.position = "bottom") + #ggplot2::guides(fill = ggplot2::guide_legend(nrow = 3)) + ggplot2::theme_bw() + ggplot2::labs(title = chart_title, subtitle = "Symptoms in 20-39 age group showing Covid-19 symptoms", y = "Percent", x = "Symptoms", caption = "Source: Your.md Dataset, Global Digital Health") + ggplot2::theme(axis.title.y = ggplot2::element_text(margin = ggplot2::margin(t = 0, r = 21, b = 0, l = 0)), plot.title = ggplot2::element_text(size = 10, face = "bold"), plot.subtitle = ggplot2::element_text(size = 9), legend.position = "bottom", legend.box = "horizontal", axis.text.x = ggplot2::element_text(angle = 55, hjust = 1)) plot_count_20_30
knitr::kable(count_20_39_show_sympt)
count_40_59_pos <- pivot_table %>% drop_na() %>% filter(age_band == "40-59" & covid_tested == "positive") %>% dplyr::group_by(symptoms, yes_no) %>% tally() %>% dplyr::mutate(percent = n/sum(n)*100) %>% dplyr::filter(yes_no != "No") %>% arrange(desc(n)) start_date = as.Date("2020-04-19") end_date = as.Date("2020-09-01") title_stub <- "SARS-Covid-19 positive in 40-59 age group category\n" start_date_title <- format(as.Date(start_date), format = "%d %B %Y") end_date_title <- format(as.Date(end_date), format = "%d %B %Y") chart_title <- paste0(title_stub, start_date_title, " to ", end_date_title) plot_count_40_59 <- ggplot2::ggplot(count_40_59_pos, ggplot2::aes(x = reorder(symptoms, - n), y = n, fill = n)) + ggplot2::coord_flip() + ggplot2::geom_bar(stat = "identity", position = "dodge") + ggplot2::scale_fill_viridis_c(option = "magma", direction = -1) + ggplot2::theme_bw() + ggplot2::labs(title = chart_title, subtitle = "Symptoms in 40-59 age group that tested positive", y = "Percent", x = "Symptoms", caption = "Source: Your.md Dataset, Global Digital Health") + ggplot2::theme(axis.title.y = ggplot2::element_text(margin = ggplot2::margin(t = 0, r = 21, b = 0, l = 0)), plot.title = ggplot2::element_text(size = 10, face = "bold"), plot.subtitle = ggplot2::element_text(size = 9), legend.position = "bottom", legend.box = "horizontal", axis.text.x = ggplot2::element_text(angle = 55, hjust = 1)) plot_count_40_59
knitr::kable(count_40_59_pos)
count_40_59_showing_symptoms <- pivot_table %>% drop_na() %>% filter(age_band == "40-59" & covid_tested == "showing symptoms") %>% dplyr::group_by(symptoms, yes_no) %>% tally() %>% dplyr::mutate(percent = n/sum(n)*100) %>% dplyr::filter(yes_no != "No") %>% arrange(desc(n)) start_date = as.Date("2020-04-19") end_date = as.Date("2020-09-01") title_stub <- "SARS-Covid-19 showing symptoms in 40-59 age group category\n" start_date_title <- format(as.Date(start_date), format = "%d %B %Y") end_date_title <- format(as.Date(end_date), format = "%d %B %Y") chart_title <- paste0(title_stub, start_date_title, " to ", end_date_title) plot_count_40_59 <- ggplot2::ggplot(count_40_59_showing_symptoms , ggplot2::aes(x = reorder(symptoms, - n), y = n, fill = n)) + ggplot2::coord_flip() + ggplot2::geom_bar(stat = "identity", position = "dodge") + ggplot2::scale_fill_viridis_c(option = "magma", direction = -1) + ggplot2::theme_bw() + ggplot2::labs(title = chart_title, subtitle = "Symptoms in 40-59 age group that tested positive", y = "Percent", x = "Symptoms", caption = "Source: Your.md Dataset, Global Digital Health") + ggplot2::theme(axis.title.y = ggplot2::element_text(margin = ggplot2::margin(t = 0, r = 21, b = 0, l = 0)), plot.title = ggplot2::element_text(size = 10, face = "bold"), plot.subtitle = ggplot2::element_text(size = 9), legend.position = "bottom", legend.box = "horizontal", axis.text.x = ggplot2::element_text(angle = 55, hjust = 1)) plot_count_40_59
knitr::kable(count_40_59_showing_symptoms)
count_60_plus_pos <- pivot_table %>% drop_na() %>% filter(age_band == "60+" & covid_tested == "positive") %>% dplyr::group_by(symptoms, yes_no) %>% tally() %>% dplyr::mutate(percent = n/sum(n)*100) %>% dplyr::filter(yes_no != "No") %>% arrange(desc(n)) start_date = as.Date("2020-04-19") end_date = as.Date("2020-09-01") title_stub <- "SARS-Covid-19 positive in 60 + age group category\n" start_date_title <- format(as.Date(start_date), format = "%d %B %Y") end_date_title <- format(as.Date(end_date), format = "%d %B %Y") chart_title <- paste0(title_stub, start_date_title, " to ", end_date_title) plot_count_60_plus <- ggplot2::ggplot(count_60_plus_pos, ggplot2::aes(x = reorder(symptoms, - n), y = n, fill = n)) + ggplot2::coord_flip() + ggplot2::geom_bar(stat = "identity", position = "dodge") + ggplot2::scale_fill_viridis_c(option = "magma", direction = -1) + ggplot2::theme_bw() + ggplot2::labs(title = chart_title, subtitle = "Symptoms in 60+ age group that tested positive", y = "Percent", x = "Symptoms", caption = "Source: Your.md Dataset, Global Digital Health") + ggplot2::theme(axis.title.y = ggplot2::element_text(margin = ggplot2::margin(t = 0, r = 21, b = 0, l = 0)), plot.title = ggplot2::element_text(size = 10, face = "bold"), plot.subtitle = ggplot2::element_text(size = 9), legend.position = "bottom", legend.box = "horizontal", axis.text.x = ggplot2::element_text(angle = 55, hjust = 1)) plot_count_60_plus
knitr::kable(count_60_plus_pos)
count_60_plus_showing_symptoms <- pivot_table %>% drop_na() %>% filter(age_band == "60+" & covid_tested == "showing symptoms") %>% dplyr::group_by(symptoms, yes_no) %>% tally() %>% dplyr::mutate(percent = n/sum(n)*100) %>% dplyr::filter(yes_no != "No") %>% arrange(desc(n)) start_date = as.Date("2020-04-19") end_date = as.Date("2020-09-01") title_stub <- "SARS-Covid-19 showing symptoms in 60 + age group category\n" start_date_title <- format(as.Date(start_date), format = "%d %B %Y") end_date_title <- format(as.Date(end_date), format = "%d %B %Y") chart_title <- paste0(title_stub, start_date_title, " to ", end_date_title) plot_count_60_plus_show <- ggplot2::ggplot(count_60_plus_showing_symptoms, ggplot2::aes(x = reorder(symptoms, - n), y = n, fill = n)) + ggplot2::coord_flip() + ggplot2::geom_bar(stat = "identity", position = "dodge") + ggplot2::scale_fill_viridis_c(option = "magma", direction = -1) + ggplot2::theme_bw() + ggplot2::labs(title = chart_title, subtitle = "Symptoms in 60+ age group that tested positive", y = "Percent", x = "Symptoms", caption = "Source: Your.md Dataset, Global Digital Health") + ggplot2::theme(axis.title.y = ggplot2::element_text(margin = ggplot2::margin(t = 0, r = 21, b = 0, l = 0)), plot.title = ggplot2::element_text(size = 10, face = "bold"), plot.subtitle = ggplot2::element_text(size = 9), legend.position = "bottom", legend.box = "horizontal", axis.text.x = ggplot2::element_text(angle = 55, hjust = 1)) plot_count_60_plus_show
Covid-19 showing symptoms in group age 60+
knitr::kable(count_60_plus_showing_symptoms)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.