library(tidymodels)
library(readr)
library(dplyr)
library(corrr)
library(tidyverse)
library(conflicted)
library(tidymodels)
library(ggrepel)
library(corrplot)
library(dplyr)
library(corrr) 
library(themis)
library(rsample)
library(caret)
library(forcats)
library(rcompanion)
library(MASS)
library(pROC)
library(ROCR)
library(data.table)
library(ggplot2)
library(tidyverse)
library(rms)


conflict_prefer("step", "stats")
data_categ_no_sev <- readr::read_csv("/Users/gabrielburcea/Rprojects/data/data_no_sev_stats.csv")


data_categ_no_sev$gender <- as.factor(data_categ_no_sev$gender)
data_categ_no_sev$country <- as.factor(data_categ_no_sev$country)
data_categ_no_sev$chills <- as.factor(data_categ_no_sev$chills)
data_categ_no_sev$cough  <- as.factor(data_categ_no_sev$cough)
data_categ_no_sev$diarrhoea  <- as.factor(data_categ_no_sev$diarrhoea)
data_categ_no_sev$fatigue  <- as.factor(data_categ_no_sev$fatigue)
data_categ_no_sev$headache   <- as.factor(data_categ_no_sev$headache)
data_categ_no_sev$loss_smell_taste   <- as.factor(data_categ_no_sev$loss_smell_taste)
data_categ_no_sev$muscle_ache  <- as.factor(data_categ_no_sev$muscle_ache)
data_categ_no_sev$nasal_congestion <- as.factor(data_categ_no_sev$nasal_congestion)
data_categ_no_sev$nausea_vomiting  <- as.factor(data_categ_no_sev$nausea_vomiting)
data_categ_no_sev$self_diagnosis <- as.factor(data_categ_no_sev$self_diagnosis)
data_categ_no_sev$shortness_breath <- as.factor(data_categ_no_sev$shortness_breath)
data_categ_no_sev$sore_throat <- as.factor(data_categ_no_sev$sore_throat)
data_categ_no_sev$sputum <- as.factor(data_categ_no_sev$sputum)
data_categ_no_sev$temperature  <- as.factor(data_categ_no_sev$temperature)
data_categ_no_sev$health_care_worker <- as.factor(data_categ_no_sev$health_care_worker)
data_categ_no_sev$care_home_worker <- as.factor(data_categ_no_sev$care_home_worker)

data_categ_no_sev$asthma   <- as.factor(data_categ_no_sev$asthma)
data_categ_no_sev$diabetes_type_two <- as.factor(data_categ_no_sev$diabetes_type_two)
data_categ_no_sev$obesity <- as.factor(data_categ_no_sev$obesity)
data_categ_no_sev$hypertension  <- as.factor(data_categ_no_sev$hypertension)
data_categ_no_sev$heart_disease  <- as.factor(data_categ_no_sev$heart_disease)
data_categ_no_sev$kidney_disease <- as.factor(data_categ_no_sev$kidney_disease)
data_categ_no_sev$lung_condition <- as.factor(data_categ_no_sev$lung_condition)
data_categ_no_sev$liver_disease <- as.factor(data_categ_no_sev$liver_disease)
data_categ_no_sev$diabetes_type_one <- as.factor(data_categ_no_sev$diabetes_type_one)
data_categ_no_sev$how_unwell <- as.factor(data_categ_no_sev$how_unwell)
data_categ_no_sev$age <- as.factor(data_categ_no_sev$age)
data_categ_no_sev$covid_tested <- as.factor(data_categ_no_sev$covid_tested)
asthma_data <- data_categ_no_sev %>%
  dplyr::select(asthma, diabetes_type_one, diabetes_type_two, obesity, hypertension, heart_disease, lung_condition, 
                liver_disease, kidney_disease, gender, age, chills, cough, diarrhoea, headache, loss_smell_taste, muscle_ache, 
                nasal_congestion, nausea_vomiting, shortness_breath, sore_throat, sputum, temperature) %>%
  tidyr::drop_na()

Asthma

Univariate analysis

Unvivariate analysis reveal chills, cough, diarrhea, headache, muschle ache, sore throat, nausea and vomiting, shortness of breath, sputum, temperature are the associated Covid symptoms in respondents with asthma.

  1. Asthma and chills
asthma_chills <- glm(asthma ~ chills, data = asthma_data, family = binomial)

summary(asthma_chills)


coef_asthma_chills <- coef(asthma_chills)

# odd ratios 
odd_ratios_ob_ch <- (exp(coef_asthma_chills)-1)*100
odd_ratios_ob_ch 
  1. Asthma and cough
asthma_cough <- glm(asthma ~ cough, data = asthma_data, family = binomial)

summary(asthma_cough)


coef_asthma_cough <- coef(asthma_cough)

odd_ratios_ob_co <- (exp(coef_asthma_cough)-1)*100

odd_ratios_ob_co 
  1. Asthma and diarrhea
asthma_diarrhea <- glm(asthma ~ diarrhoea, data = asthma_data, family = binomial)

summary(asthma_diarrhea)


# get coef
coef_ob_diarrhea <- coef(asthma_diarrhea)

# odd ratios
odd_ratio_ob_diar <- (exp(coef_ob_diarrhea)-1)*100

odd_ratio_ob_diar
  1. Asthma and headache
asthma_headache <- glm(asthma ~ headache, data = asthma_data, family = binomial)

summary(asthma_headache)

coef_ob_head <- coef(asthma_headache)

odd_ratio_ob_head <- (exp(coef_ob_head)-1)*100

odd_ratio_ob_head
  1. Asthma and loss of smell and taste
asthma_loss_smell <- glm(asthma ~ loss_smell_taste, data = asthma_data, family = binomial)


summary(asthma_loss_smell)

coef_ob_loss_smell <- coef(asthma_loss_smell)

odd_ratio_ob_los <- (exp(coef_ob_loss_smell)-1)*100

odd_ratio_ob_los
  1. Asthma and muscle ache
asthma_muscle_ache <- glm(asthma ~ muscle_ache, data = asthma_data, family = binomial)

summary(asthma_muscle_ache)

coef_ob_muscle_ac <- coef(asthma_muscle_ache)

odd_ratio_ob_los <- (exp(coef_ob_muscle_ac)-1)*100

odd_ratio_ob_los
  1. Asthma and nasal congestion
asthma_nasal_cong <- glm(asthma ~ nasal_congestion, data = asthma_data, family = binomial)

summary(asthma_nasal_cong)


coef_ob_nas_cong <- coef(asthma_nasal_cong)

odd_ratio_ob_nas_cong <- (exp(coef_ob_nas_cong))

odd_ratio_ob_nas_cong
  1. Athma and nausea and vomiting
asthma_nausea_vomitting <- glm(asthma ~ nausea_vomiting, data = asthma_data, family = binomial)

summary(asthma_nausea_vomitting)


coef_ob_naus_vom <- coef(asthma_nausea_vomitting)

odd_ratio_ob_naus_vom <- (exp(coef_ob_naus_vom)-1)*100

odd_ratio_ob_naus_vom
  1. Asthma and shortness of breath
asthma_short_breath <- glm(asthma ~ shortness_breath, data = asthma_data, family = binomial)

summary(asthma_short_breath)

coef_ob_sh_br <- coef(asthma_short_breath)


odd_ratio_ob_sh_br <- (exp(coef_ob_sh_br)-1)*100

odd_ratio_ob_sh_br
  1. Asthma and sore throat
asthma_sore_thr <- glm(asthma ~ sore_throat, data = asthma_data, family = binomial)

summary(asthma_sore_thr)

coef_ob_sore_thr <- coef(asthma_sore_thr)


odd_ratio_ob_sore_thr <- (exp(coef_ob_sore_thr)-1)*100

odd_ratio_ob_sore_thr
  1. Asthma and sputum
asthma_sputum <- glm(asthma ~ sputum, data = asthma_data, family = binomial)


summary(asthma_sputum)


coef_ob_sp <- coef(asthma_sputum)

odd_ratio_ob_sp <- (exp(coef_ob_sp)-1)*100

odd_ratio_ob_sp


vif(asthma_sputum)
  1. Asthma and temperature
asthma_temperature <- glm(asthma ~ temperature, data = asthma_data, family = binomial)


summary(asthma_temperature)

coef_ob_temp <- coef(asthma_temperature)

odd_ratio_ob_temp <- (exp(coef_ob_temp)-1)*100

odd_ratio_ob_temp

vif(asthma_temperature)

Multivariable Logistic Regression

Adding all symptoms that showed to be associated in asthma patients.

When adjusting for all variables, patients showing covid-19 symptoms/of patients with positive covid test, the results show strong evidence for an association between variables such as chills, nausea and vomiting, shortness of breath and temperature (38.1-39; 39.1-40) (p ≤ 0.05) in patients with asthma.

When adjusting for all variables,in patients showing covid-19 symptoms/of patients with positive covid test, in patients with asthma there was:

asthma_model <- glm(asthma ~ chills + cough + diarrhoea + headache + muscle_ache + nausea_vomiting 
                    + shortness_breath + sputum + temperature, data = asthma_data, family = binomial)

summary(asthma_model)

coef_asthma_model <- coef(asthma_model)

odd_ratio_asthma <- (exp(coef_asthma_model)-1)*100

odd_ratio_asthma

vif(asthma_model)

coef_ob_asthma <- coef(asthma_model)
# Confidence intervals 
confint(asthma_model)

#Put the coefficients and confidence intervals onto a useful scale

conf_int_ast <- exp(confint(asthma_model)) 
conf_int_ast


gabrielburcea/cvindia documentation built on Feb. 17, 2021, 3:31 a.m.