aggrmodel: Fit Aggregated Model

Description Usage Arguments Value Examples

View source: R/aggrmodel.R

Description

Fit Aggregated Model

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
aggrmodel(
  formula = NULL,
  data,
  market,
  Y = NULL,
  timeVar,
  timeVar2 = NULL,
  groupVar,
  repVar,
  n_basis,
  n_basis_cov = NULL,
  basisFunction = "B-Splines",
  n_basis2 = NULL,
  n_order2 = NULL,
  basisFunction2 = NULL,
  cicleRep = FALSE,
  n_order = 4,
  covType = "Homog_Uniform",
  corType = "exponential",
  optSampleCovMatrix = FALSE,
  sigPar_init = NULL,
  corPar_init = NULL,
  tauPar_init = NULL,
  betaCov_init = NULL,
  returnFitted = TRUE,
  positive_restriction = FALSE,
  optimMethod = "L-BFGS-B",
  use_parallel = FALSE,
  n_cores = parallel::detectCores() - 1,
  truncateDec = NULL,
  verbose = FALSE,
  optVerbose = FALSE,
  useGrad = FALSE,
  diffTol = 1e-05,
  itMax = 100
)

Arguments

formula

building...

data

Dataset containing group, replicates (if any), time and aggregated signal

market

Market data frame. MUST be a 3 column dataframe with the following order: Group, Type and Number of subjects

Y

Dependent variable: aggregated signal

timeVar

Name of time variable

timeVar2

Name of second functional

groupVar

Name of grouping variable

repVar

Name of replicates variable

n_basis

Number of basis functions for basis expansion

n_basis_cov

Number of basis functions for variance functional expansion

basisFunction

Character indicating which basis: 'B-Splines' or 'Fourier'

n_basis2

Number of basis for second functional

n_order2

Order for second functional expansion

basisFunction2

Character indicating which basis: 'B-Splines' or 'Fourier'

cicleRep

Indicator TRUE/FALSE if replicates are cyclical

n_order

Order of basis Splines (Default: 4)

covType

Covariance functional type. One of "Homog_Uniform", "Homog" or "Heterog"

corType

Correlation structure type. One of "periodic" or "exponential"

optSampleCovMatrix

Optmization criterion via sample covariance matrix convergence (TRUE and default) or via likelihood (more sensitive)

sigPar_init

Inital values for sigma

corPar_init

Numeric: Initial value for correlation parameters (default:20)

tauPar_init

Numeric: Initial value for expoent parameters of complete covariance (default:0.5)

betaCov_init

Inital values for variance functional expansion

returnFitted

Should the fitted values be returned in output?

positive_restriction

TRUE/FALSE if mean curves are strictly positive

optimMethod

Choose optim method (Default: L-BFGS-B)

use_parallel

TRUE/FALSE if computation should be parallel

n_cores

Number of clusters. Default: parallel::detectCores()

truncateDec

Decimal to be truncated at covariance matrix

verbose

TRUE/FALSE prints likelihood values during optimization

optVerbose

Print parameters while in optmization

useGrad

Use gradient function approximation for optimization? (Default: FALSE)

diffTol

Tolerance of model covergence

itMax

Maximum number of iterations (Default: 100)

Value

An aggrmodel object

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
set.seed(81453)
df <- createSimuData(B1 = 8,
                    nRep=10)

mkt <- attr(df,"market")
df <- subset(df, group <= 8) # get only cluster 1
mkt <- subset(mkt,group<=8)

fit <-
 aggrmodel(
   data = df,
   market = mkt,
   Y = obs,
   timeVar = time,
   groupVar = group,
   repVar = rep,
   n_basis = 8,
   covType = "Homog_Uniform",
   corType = "exponential",
   returnFitted = TRUE,
   use_parallel = TRUE
 )

plot(fit)

gabrielfranco89/aggrmodel documentation built on June 1, 2020, 8:57 a.m.