knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
This guide explains how to use the godley
package to create the PC model — a model with government money and portfolio choice, as described by Wynne Godley and Marc Lavoie in Chapter 4 of Monetary Economics. An Integrated Approach to Credit, Money, Income, Production and Wealth.
library(godley)
Start by initializing an empty SFC (Stock-Flow Consistent) model:
# Create empty model model_pc <- create_model(name = "SFC PC")
Define the variables for the model:
# Add variables model_pc <- model_pc |> add_variable("B_cb", desc = "") |> add_variable("H_s", desc = "") |> add_variable("B_s", desc = "") |> add_variable("B_h", desc = "") |> add_variable("H_h1", desc = "") |> add_variable("H_h", desc = "") |> add_variable("C", desc = "") |> add_variable("V", desc = "") |> add_variable("T_x", desc = "") |> add_variable("Y", desc = "Income = GDP") |> add_variable("Yd", desc = "Disposable income of households") |> add_variable("alpha1", init = 0.6, desc = "Propensity to consume out of income") |> add_variable("alpha2", init = 0.4, desc = "Propensity to consume out of wealth") |> add_variable("theta", init = 0.2, desc = "Tax rate") |> add_variable("r", init = 0.025, desc = "") |> add_variable("G", init = 20, desc = "Government demand") |> add_variable("lambda0", init = 0.635, desc = "") |> add_variable("lambda1", init = 0.05, desc = "") |> add_variable("lambda2", init = 0.01, desc = "")
Establish the relationships between variables by adding equations:
# Add equations model_pc <- model_pc |> add_equation("Y = C + G", desc = "") |> add_equation("Yd = Y - T_x + r[-1] * B_h[-1]") |> add_equation("T_x = theta * (Y + r[-1] * B_h[-1])") |> add_equation("V = V[-1] + (Yd - C)") |> add_equation("C = alpha1 * Yd + alpha2 * V[-1]") |> add_equation("H_h = V - B_h") |> add_equation("H_h1 = V * ((1 - lambda0) - lambda1 * r + lambda2 * ( Yd/V ))") |> add_equation("B_h = V * (lambda0 + lambda1 * r - lambda2 * ( Yd/V ))") |> add_equation("B_s = B_s[-1] + (G + r[-1] * B_s[-1]) - (T_x + r[-1] * B_cb[-1])") |> add_equation("H_s = H_s[-1] + B_cb - B_cb[-1]") |> add_equation("B_cb = B_s - B_h") |> add_equation("H_h = H_s", hidden = T)
Now, you can simulate the model (in this example, we calculate the baseline scenario over 100 periods using the Gauss method)
# Simulate model model_pc <- simulate_scenario(model_pc, scenario = "baseline", max_iter = 350, periods = 100, hidden_tol = 0.1, tol = 1e-08, method = "Gauss" )
With the simulation estimated, visualize the results for the variables of interest:
# Plot results plot_simulation( model = model_pc, scenario = c("baseline"), from = 1, to = 100, expressions = c("B_h / V") )
# Plot results plot_simulation( model = model_pc, scenario = c("baseline"), from = 1, to = 100, expressions = c("H_h / V") )
Note: The above example uses the new pipe operator (|>
), which requires R 4.1 or later.
With godley
package you can simulate how shocks affect the economy (specifically, how they impact the base scenario).
In this example we propose to implement an increased rate of interest on bills.
First, initialize an empty shock object:
# Create empty shock shock_pc <- create_shock()
Define the shock by adding an appropriate equation:
# Add shock equation with increased rate of interest on bills shock_pc <- add_shock(shock_pc, variable = "r", value = 0.035, desc = "Increase in the rate of interest on bills", start = 5, end = 50 )
Integrate the shock into the model by creating a new scenario:
# Create new scenario with this shock model_pc <- add_scenario(model_pc, name = "expansion", origin = "baseline", origin_start = 1, origin_end = 100, shock = shock_pc )
Simulate the scenario with the shock applied:
# Simulate shock model_pc <- simulate_scenario(model_pc, scenario = "expansion", max_iter = 350, periods = 100, hidden_tol = 0.1, tol = 1e-08, method = "Newton" )
Finally, plot the simulation outcomes:
# Plot results plot_simulation( model = model_pc, scenario = c("expansion"), from = 1, to = 50, expressions = c("B_h / V") )
# Plot results plot_simulation( model = model_pc, scenario = c("expansion"), from = 1, to = 50, expressions = c("H_h / V") )
For more details on PC model, refer to Chapter 4 of Monetary Economics. An Integrated Approach to Credit, Money, Income, Production and Wealth.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.