library(devtools) library(roxygen2) library(tidyverse) library(pkgdown) library(wordnet) setDict("C:\\dict")
Dictionaries_FT = read.csv("C:\\Users\\Windows\\Dropbox\\Research Projects & Files\\Dictionary creation Project\\FULL dictionaries ft shortened 060220.csv", stringsAsFactors = F)##not updated on 062921 like others All.steps_Dictionaries_FT = read.csv("C:\\Users\\Windows\\Dropbox\\Research Projects & Files\\Dictionary creation Project\\Pre dictionaries ft shortened 060220.csv", stringsAsFactors = F)##not updated on 062921 like others All.steps_Dictionaries = read.csv("C:\\Users\\Windows\\Dropbox\\Research Projects & Files\\Dictionary creation Project\\Large Dictionaries 031324 longer.csv", stringsAsFactors = F) Dictionaries = read.csv("C:\\Users\\Windows\\Dropbox\\Research Projects & Files\\Dictionary creation Project\\Preprocessed Only Dictionaries 063023.csv", stringsAsFactors = F) Full_Vectors_Avg = read.csv("C:\\Users\\Windows\\Dropbox\\Research Projects & Files\\Dictionary creation Project\\Full_Vectors AVG.csv", stringsAsFactors = F) ##not updated on 062921 like others Seed_Vectors_Avg = read.csv("C:\\Users\\Windows\\Dropbox\\Research Projects & Files\\Dictionary creation Project\\Seed vectors Average 080221.csv", stringsAsFactors = F) Seed_Vectors_personcontext_Avg = read.csv("C:\\Users\\Windows\\Dropbox\\Research Projects & Files\\Dictionary creation Project\\Seed vectors person context Average 080221.csv", stringsAsFactors = F) Sentiments = read.csv("C:\\Users\\Windows\\Dropbox\\Research Projects & Files\\Dictionary creation Project\\SENT_dict.csv") Obituary_data = read.csv("C:\\Users\\Windows\\Dropbox\\Research Projects & Files\\Dictionary creation Project\\obituaries_p.csv") ####### Dictionaries_FT = read.csv("D:\\Dropbox\\Dictionary creation Project\\FULL dictionaries ft shortened 060220.csv", stringsAsFactors = F)##not updated on 062921 like others All.steps_Dictionaries_FT = read.csv("D:\\Dropbox\\Dictionary creation Project\\Pre dictionaries ft shortened 060220.csv", stringsAsFactors = F)##not updated on 062921 like others All.steps_Dictionaries = read.csv("D:\\Dropbox\\Dictionary creation Project\\Large Dictionaries 031324 longer.csv", stringsAsFactors = F) Dictionaries = read.csv("D:\\Dropbox\\Dictionary creation Project\\Preprocessed Only Dictionaries 063023.csv", stringsAsFactors = F) Full_Vectors_Avg = read.csv("D:\\Dropbox\\Dictionary creation Project\\Full_Vectors AVG.csv", stringsAsFactors = F) ##not updated on 062921 like others Seed_Vectors_Avg = read.csv("D:\\Dropbox\\Dictionary creation Project\\Seed vectors Average 080221.csv", stringsAsFactors = F) Seed_Vectors_personcontext_Avg = read.csv("D:\\Dropbox\\Dictionary creation Project\\Seed vectors person context Average 080221.csv", stringsAsFactors = F) Sentiments = read.csv("D:\\Dropbox\\Dictionary creation Project\\SENT_dict.csv") Obituary_data = read.csv("D:\\Dropbox\\Dictionary creation Project\\obituaries_p.csv") #Dictionaries = Dictionaries[-1] colnames(Dictionaries) names(Dictionaries)[names(Dictionaries) == "values3"] = "word" Dictionaries_FT = Dictionaries_FT[-1] names(Dictionaries_FT)[names(Dictionaries_FT) == "values3"] = "word" use_data(Dictionaries_FT,overwrite = TRUE) use_data(All.steps_Dictionaries_FT,overwrite = TRUE) use_data(All.steps_Dictionaries,overwrite = TRUE) use_data(Dictionaries,overwrite = TRUE) use_data(Full_Vectors_Avg,overwrite = TRUE) use_data(Seed_Vectors_Avg,overwrite = TRUE) use_data(Sentiments,overwrite = TRUE) use_data(Obituary_data,overwrite = TRUE) use_data(Seed_Vectors_allwords_Avg,overwrite = TRUE) use_data(Seed_Vectors_personcontext_Avg,overwrite = TRUE)
document()
# may need Sys.setenv("R_REMOTES_NO_ERRORS_FROM_WARNINGS"=TRUE)
devtools::install(build_vignettes = F)
library(SADCAT)
pkgdown::build_site()
# library(SADCAT) # SADCAT:::Code_single # # Code_singlex = function (data, text = "word", more2na = T) # { # res = merge(x = data, y = Dictionaries, by.x = text, by.y = "word", # all.x = T) # res2 = dplyr::select(res, contains("_dict")) # for(i in colnames(res2)){ # res2[i] = apply(res2[i], 1, function(x) ifelse(is.na(x), 0, x) ) # } # res = dplyr::select(res, -contains("_dict")) # res = cbind(res,res2) # Dicts_v3pre = unique(Dictionaries$word) # res$NONE = as.numeric(!(as.matrix(res[[text]]) %in% as.matrix(Dicts_v3pre))) # res$NONE2 = ifelse(stringr::str_count(res[[text]], "\\S+") > # 2, NA, as.numeric(!(res[[text]]) %in% as.matrix(Dicts_v3pre))) # if (more2na == F) { # return(res) # } # else { # data.table::setDT(res) # nm1 <- grep("_dict", names(res), value = TRUE) # for (j in nm1) { # data.table::set(res, i = NULL, j = j, value = ifelse(stringr::str_count(res[[text]], # "\\S+") > 2, NA, res[[j]])) # } # return(res) # } # } # # # Code_sentx = function(data, raw_text = "rawword", preproc_text = "word"){ # SENT_dictv1 = Sentiments[,-c(8,9,10)] # SENT_dictv2 = Sentiments %>% # dplyr::select(word = word4,Val_bing2=Val_bing,Val_NRC2=Val_NRC,Val_afinn2=Val_afinn,Val_loughran2 =Val_loughran,Val_sentiwn2 =Val_sentiwn)%>% # dplyr::group_by(word)%>% # dplyr::summarize_all(funs(mean(.,na.rm=T))) # data$tv = sapply(data[[raw_text]], tolower) # data$tv = sapply(data$tv, trimws) # data2 = merge(x = data, y =SENT_dictv1, by.x = "tv",by.y = "word", all.x = TRUE) #Find first if there is a match with original response - different lemmas (next code) might have different sentiment, so this is ideal # data3 = merge(x = data2, y = SENT_dictv2, by.x = preproc_text,by.y = "word", all.x = TRUE) # return(data3) # } # # dtatat = data.frame(TEStt = c("hello","warm")) # dtatat$TEStt = as.character(dtatat$TEStt) # # TRYYc = SADCAT::Code_words(dtatat,"TEStt") # # Code_sentx # # SADCAT:::Code_single
# SENT_dictv1 = Sentiments[,-c(8,9,10)] # SENT_dictv2 = Sentiments %>% # dplyr::select(word = word4,Val_bing2=Val_bing,Val_NRC2=Val_NRC,Val_afinn2=Val_afinn,Val_loughran2 =Val_loughran,Val_sentiwn2 =Val_sentiwn) # SENT_dictv3 = aggregate(formula = cbind(Val_bing2, Val_NRC2, Val_afinn2,Val_loughran2,Val_sentiwn2) ~ word, # data = SENT_dictv2, # FUN = function(x){ # c(mean(x,na.rm=T)) # }) # SENT_dictv3 = by(SENT_dictv2, # INDICES = list(SENT_dictv2$word), # FUN = function(x){ # data.frame(word = unique(x$word), # Val_bing2 = mean(x$Val_bing2,na.rm=T), # Val_NRC2 = mean(x$Val_NRC2,na.rm=T), # Val_afinn2 = mean(x$Val_afinn2,na.rm=T), # Val_loughran2 = mean(x$Val_loughran2,na.rm=T), # Val_sentiwn2 = mean(x$Val_sentiwn2,na.rm=T)) # }) # do.call(rbind,SENT_dictv3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.