knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
The goal of rmiscfun is provide call functions that I use in different projects (at work and personal ones.)
devtools
package in R
:install.packages("devtools")
tidyverse
package in R
. I use functions from several tidyverse packages, so it is better to have them all installed.install.packages("tidyverse")
You can install the current version of rmiscfun from GitHub with:
devtools::install_github("gbasulto/rmiscfun")
| Function | Brief description |
| :-------------------- | :------------------------------------------------------------|
| glance_data
| Summarize both, categorical and numerical variables in a dataframe |
| glance_data_in_workbook
| Similar to glance_data
, but it breaks the summary into types and allows the used to save it in an Excel Workbook |
| plot_numerical_vars
| Graphical summaries of numerical variables using functions from ggplot2
and GGally
|
| clean_colnames
| Clean column names |
| clean_col_content
| Clean column content if a variable is character or factor |
| interpolate_values
| Interpolate values of a variable |
| add_missing_columns
| Append all the columns not present in a reference vector |
| var_imp_plot
| Variable importance plot for random forest |
I am using the Iris dataset in R, which has 5 variables. The first four are measurements 150 flowers and the last column specifies the species (there are 50 flowers of each species).
## Uncomment the following line to read the documentation of the dataset. ## help(iris) head(iris)
glance_data
## Load package library(rmiscfun) ## Check documentation help("glance_data") ## Summarize iris dataset glance_data(iris)
glance_data_in_workbook
## Load package library(rmiscfun) ## Check documentation help("glance_data_in_workbook") ## Summarize iris dataset glance_data_in_workbook(iris) ## Uncomment the following line to summarize iris dataset AND create Excel Worksheet ## glance_data_in_workbook(iris, "iris_in_excel.xlsx")
plot_numerical_vars
## Load package library(rmiscfun) ## Check documentation help("plot_numerical_vars") plot_numerical_vars(iris, "pairwise") plot_numerical_vars(iris, "density") plot_numerical_vars(iris, "boxplot") plot_numerical_vars(iris, "violin") plot_numerical_vars(iris, "histogram") plot_numerical_vars(iris, "qqplot")
clean_colnames
## Load package library(rmiscfun) ## Check documentation help("clean_colnames") input <- c("bart Simpson", "LisaSimpson", "maggie..simpson!", "MARGE-Simpson", "Homer Simpson :-)") clean_colnames(input)
clean_col_content
library(rmiscfun) clean_col_content(c("bart Simpson", "LisaSimpson", "maggie..simpson!", "MARGE-Simpson", "Homer Simpson :-)")) ## Get warning for factors. clean_col_content( factor(c("bart Simpson", "LisaSimpson", "maggie..simpson!", "MARGE-Simpson", "bart Simpson", "Homer Simpson :-)")) )
interpolate_values
library(rmiscfun) x <- c(1, 2, 4, 5) y <- c(1, 3, 7) z <- c("a", "b", "a") interpolate_values(x, y, z)
add_missing_columns
library(rmiscfun) input_df <- data.frame(a = 1:3, b = letters[1:3]) ## Reference vector colnames_vector <- c("b", "c") ## Filler filler <- -888 ## Output vector add_missing_columns(input_df, colnames_vector, filler)
var_imp_plot
library(randomForest) library(rmiscfun) ## Fit random forest rf <- randomForest(Species ~ ., data = iris) ## Display variable importance plot var_imp_plot(rf)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.