| KNN.acf | R Documentation | 
Multioutput KNN
X: | 
 training input [N,n]  | 
Y: | 
 training output [N,m]  | 
X.ts: | 
 test input [N.ts,n]  | 
k: | 
 min number of neighbours  | 
dist: | 
 type of distance:   | 
F: | 
 forgetting factor  | 
C: | 
 integer parameter which sets the maximum number of neighbours (Ck)  | 
wta: | 
 if TRUE a winner-takes-all strategy is used; otherwise a weigthed combination is done on the basis of the l-o-o error  | 
Acf: | 
 autocorrelation function of the training series  | 
Reg: | 
 number (>1) of null terms to regularise the mean  | 
KNN.acf
Multioutput KNN for multi-step-ahed prediction. It performs a locally constant model with weighted combination of local model on the basis of the dynamic properties of the training time series.
vector of N.ts predictions
Gianluca Bontempi Gianluca.Bontempi@ulb.be
Bontempi G. Ben Taieb S. Conditionally dependent strategies for multiple-step-ahead prediction in local learning, International Journal of Forecasting Volume 27, Issue 3, July–September 2011, Pages 689–699
## Multi-step ahead time series forecasting
require(gbcode)
library(lazy)
t=seq(0,200,by=0.1)
N<-length(t)
H<-500 ## horizon prediction
TS<-sin(t)+rnorm(N,sd=0.1)
TS.tr=TS[1:(N-H)]
N.tr<-length(TS.tr)
TS.ts<-TS[(N-H+1):N]
n=3
TS.tr=array(TS.tr,c(length(TS.tr),1))
E=MakeEmbedded(TS.tr,n=n,delay=0,hor=H,1)
X<-E$inp
Y<-E$out
N<-NROW(X)
Y.cont<-KNN.acf(X,Y,rev(TS.tr[(N.tr-n+1):N.tr]),TS=TS.tr)
plot(t[(N-H+1):N],TS.ts)
lines(t[(N-H+1):N],Y.cont)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.