RunLSI: Run Latent Semantic Indexing on binary count matrix

Description Usage Arguments Examples

Description

For details about stored LSI calculation parameters, see PrintLSIParams.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
RunLSI(object, ...)

## Default S3 method:
RunLSI(object, assay = NULL, n = 50,
  reduction.key = "LSI_", scale.max = NULL, seed.use = 42,
  verbose = TRUE, ...)

## S3 method for class 'Assay'
RunLSI(object, assay = NULL, features = NULL, n = 50,
  reduction.key = "LSI_", scale.max = NULL, verbose = TRUE, ...)

## S3 method for class 'Seurat'
RunLSI(object, assay = NULL, features = NULL,
  n = 50, reduction.key = "LSI_", reduction.name = "lsi",
  scale.max = NULL, verbose = TRUE, ...)

Arguments

object

Seurat object

...

Arguments passed to other methods

assay

Which assay to use. If NULL, use the default assay

n

Number of singular values to compute

reduction.key

Key for dimension reduction object

scale.max

Clipping value for cell embeddings. Default (NULL) is no clipping.

seed.use

Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed.

verbose

Print messages

features

Which features to use. If NULL, use variable features

reduction.name

Name for stored dimension reduction object. Default 'lsi'

Examples

1
lsi <- RunLSI(object = pbmc_small, n = 5)

gcday/seurat_fresh documentation built on June 23, 2019, 12:02 a.m.