Utility function to get data for a specific epiweek, specific issue date, and specific region.
score_dist <- function(dist,truth){ return (max(log(sum(round(dist,1) == round(truth,1))/length(dist)),-10)) }
predownload_data <- function(){ data_obj <- list() data_obj_idx <- 1 for (region in c('al', 'ak', 'az', 'ca', 'co', 'ct','de','fl','ga', 'hi', 'id', 'il','in', 'ia', 'ks', 'ky', 'la', 'me', 'md', 'ma', 'mi', 'mn', 'ms', 'mo', 'mt', 'ne', 'nv', 'nh', 'nj', 'nm', 'ny_minus_jfk', 'nc', 'nd', 'oh', 'ok', 'or','pa', 'ri', 'sc', 'sd', 'tn', 'tx', 'ut', 'vt', 'va', 'wa', 'wv', 'wi', 'wy','as','mp', 'dc', 'gu', 'pr', 'vi', 'ord', 'lax', 'jfk')){ req <- curl_fetch_memory(paste0("https://delphi.midas.cs.cmu.edu/epidata/api.php?source=fluview®ions=",region,"&epiweeks=201240-201920")) req_json <- jsonlite::prettify(rawToChar(req$content)) data_obj[[data_obj_idx]] <- jsonlite::fromJSON(req_json)$epidata data_obj_idx <- data_obj_idx +1 } total_data <- do.call(rbind, data_obj) saveRDS(total_data,"data.RDS") } get_ili_for_epiweek_and_issue <- function(start_epiweek,end_epiweek,region){ total_data <- readRDS("data.RDS") return (total_data[total_data$region == region & total_data$epiweek <= end_epiweek & total_data$epiweek >= start_epiweek ,]) }
plot_predictive_dist <- function(pred_dist,truth,test_idx,method,previous_point,location){ p <-ggplot(data=data.frame(x = pred_dist),aes(x=x)) + geom_histogram()+geom_vline(xintercept =truth ) +xlim(0,10) + geom_vline(xintercept = previous_point,col='blue') ggsave(filename = paste0(location,"-",method,"-",test_idx),plot = p,device = "png") } plot_data_till_time_t <- function(data){ p <-ggplot(data=data.frame(x = 1:length(data),y=data),aes(x=x,y=y)) + geom_line() ggsave(filename = paste0("data-",test_idx),plot = p,device = "png") }
Code for data set-up and evaluation given a specific region.
library(quantmod) library(pander) library(cdcfluview) library(sarimaTD) library(cdcfluutils) library(ggplot2) ## declare region to be analyzed region_str <- c("Alabama","Alaska","Arizona","California","Colorado","Connecticut", "Delaware","Georgia","Hawaii","Idaho", "Illinois","Indiana","Iowa","Kansas","Kentucky","Louisiana", "Maine","Maryland","Massachusetts","Michigan","Minnesota","Mississippi","Missouri","Montana", "Nebraska","Nevada","New Hampshire","New Jersey","New Mexico","New York","North Carolina","North Dakota","Ohio","Oklahoma","Oregon","Pennsylvania","Rhode Island","South Carolina","South Dakota","Tennessee","Texas","Utah","Vermont", "Virginia","Washington","West Virginia","Wisconsin","Wyoming") region_abbrv <- c('al', 'ak', 'az', 'ca', 'co', 'ct','de','ga', 'hi', 'id', 'il','in', 'ia', 'ks', 'ky', 'la', 'me', 'md', 'ma', 'mi', 'mn', 'ms', 'mo', 'mt', 'ne', 'nv', 'nh', 'nj', 'nm', 'ny_minus_jfk', 'nc', 'nd', 'oh', 'ok', 'or','pa', 'ri', 'sc', 'sd', 'tn', 'tx', 'ut', 'vt', 'va', 'wa', 'wv', 'wi', 'wy') ### first lets collect all the training data state_data <- matrix(nrow=length(region_str),ncol=105) for (location in 1:length(region_str)){ region_str_local <- region_str[location] region_abbrv_local <- region_abbrv[location] train_data <- get_ili_for_epiweek_and_issue("201640","201840",region_abbrv_local) state_data[location,] <- train_data$wili } ### plot state data ggplot(data=data.frame(y=c(state_data),x=rep(1:105,48),group=rep(48,each=105)),aes(x=x,y=y,col=group))+ geom_line() + facet_wrap(~group) state_data <- read.csv("/Users/gcgibson/KCDETD/data/state_data.csv") ma_data <- state_data[state_data$region == "Massachusetts",] plot(ma_data$unweighted_ili) library(sarimaTD) sarima_fit_bc_transform <- fit_sarima( y =ma_data$unweighted_ili[1:300], ts_frequency = 52, transformation = "none", seasonal_difference = F) model.loc = "arma.txt" model_code <- cat(' model { # Set up residuals for(t in 1:max(p,q)) { eps[t] <- d[t] - alpha } for (t in (max(p,q)+1):T) { d[t] ~ dnorm(alpha + ar_mean[t] + ma_mean[t] , sigma) ma_mean[t] <- inprod(theta, eps[(t-q):(t-1)]) ar_mean[t] <- inprod(phi, d[(t-p):(t-1)]) eps[t] <- d[t] - alpha - ar_mean[t] - ma_mean[t] } # Likelihood # Priors alpha ~ dnorm(0.0,0.01) alpha_s ~ dnorm(0.0,0.01) sigma ~ dgamma(.001,.001); gamma_1 ~ dunif(0, 10) gamma_2 ~ dunif(0, 1) for (i in 1:q) { theta[i] ~ dnorm(0.0,0.01) } for(i in 1:p) { phi[i] ~ dnorm(0.0,0.01) } }',file=model.loc) library(R2jags) jags.data = list(d= c(ma_data$unweighted_ili[1:300],NA),p=1,q=1,T=301) jags.params = c("d") mod_ar1_intercept = jags(jags.data, parameters.to.save = jags.params, model.file = model.loc, n.chains = 3, n.burnin = 5000, n.thin = 1, n.iter = 10000, DIC = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.