nv.krls: Estimating Normal Vector through Kernel Regularized Least...

Description Usage Arguments Value Author(s) References See Also

View source: R/nv.krls.R

Description

Estimating Normal Vector through Kernel Regularized Least Squares

Usage

1
nv.krls(xmat, resp, sample.size = 300, ...)

Arguments

xmat

Matrix of OC coordinates (i.e., predictors).

resp

Response Variable (i.e., ordered choices).

sample.size

Sample size for data used for the estimation of KRLS.

...

Additional arguments passed to krls.

Value

A vector of coefficients.

Author(s)

Tzu-Ping Liu jamesliu0222@gmail.com, Gento Kato gento.badger@gmail.com, and Sam Fuller sjfuller@ucdavis.edu. This is a modified version of the code included in ooc function.

References

Jeremy Ferwerda, Jens Hainmueller, Chad J. Hazlett (2017). Kernel-Based Regularized Least Squares in R (KRLS) and Stata (krls). Journal of Statistical Software, 79(3), 1-26. doi:10.18637/jss.v079.i03

See Also

krls


gentok/ipbridging documentation built on March 29, 2020, 3:06 a.m.