# publish slides
cp -Rv slides/2* ~/geocompr/geocompr.github.io/static/presentations
cd ~/geocompr/geocompr.github.io
git status
git add -A
git commit -am 'Add slides'
git push
# hugo
# cd public
# git status
# git diff
# git add -A
# git commit -am 'Update site'
# git push
cd ~/geocompr/geocompkg
# setup
options(htmltools.dir.version = FALSE)
library(RefManageR)
BibOptions(check.entries = FALSE, 
           bib.style = "authoryear", 
           cite.style = 'alphabetic', 
           style = "markdown",
           first.inits = FALSE,
           hyperlink = FALSE, 
           dashed = FALSE)
my_bib = ReadBib("refs-geostat.bib", check = FALSE)

About the course


About us

Robin Lovelace

--

Nikée Groot

--

You?

--

Course home: https://git.io/geocompr-2-day-course


Housekeeping

library(leaflet)
library(osmdata)
library(tmap)
lida = opq("Leeds") %>% 
  add_osm_feature(key = "name", value = "Worsley Building") %>% 
  osmdata_sf()
# m = mapview::mapview(lida$osm_polygons, zoom = 16)
lida_centroid = lida$osm_polygons %>% 
  sf::st_centroid()
lon = sf::st_coordinates(lida_centroid)[1]
lat = sf::st_coordinates(lida_centroid)[2]
m = tm_shape(lida$osm_polygons) +
  tm_polygons(col = "red") +
  tm_view(set.view = c(lon + 0.005, lat - 0.005, 15)) +
  tm_basemap(server = leaflet::providers$CartoDB.Positron) +
  tm_minimap(server = leaflet::providers$OpenTopoMap, zoomLevelOffset = -10) +
  tm_scale_bar()
tmap_mode("view")
m

Learning objectives

By the end of the course, you will be able to:


Agenda

.pull-left[

Day 1: Foundations

09:30-11:00 Introduction to the course and software

11:15-12:30: R's spatial ecosystem

Lunch

13:30-15:00 The structure of vector geographic data in R and working with attribute data

15:15-16:30 Spatial data operations

]

--

.pull-right[

Day 2 GIS, viz, modelling

09:30-11:00 Reading and writing geographic data

11:15-12:30: Geometric operations

Lunch

13:30-15:00 Visualisation

15:15-16:30 Working on your own data

]

--

Updated challenges/examples: git.io/geocompr-2-day-course


What is geocomputation?

.pull-left[

GeoComputation is about using the various different types of geodata and about developing relevant geo-tools within the overall context of a 'scientific' approach r Citep(my_bib, "openshaw_geocomputation_2000", .opts = list(cite.style = "authoryear")).

]

.pull-right[

knitr::include_graphics("http://www.ccg.leeds.ac.uk/people/s.openshaw/s.openshaw.png")

]

--

At the turn of the 21st Century it was unrealistic to expect readers to be able to reproduce code examples, due to barriers preventing access to the necessary hardware, software and data


Other aspects of the definition

--

What distinguishes geocomputation from the older quantitative geography, is its emphasis on "creative and experimental" GIS applications r Citep(my_bib, "longley_geocomputation_1998", .opts = list(cite.style = "authoryear")).

--

It's about doing "practical work that is beneficial or useful" r Citep(my_bib, "openshaw_geocomputation_2000", .opts = list(cite.style = "authoryear")).

--

about harnessing the power of modern computers to do things with geographic data.


Introduction to the course and software

RStudio IDE Overview

--

--


An introduction to R

See slides at https://geocompr.github.io/presentations/intro-to-R.html


R's spatial ecosystem

--

--


Spatial ecosystem: demo and practical


Attribute operations


Spatial data operations

Work through the following sections in Geocomputation with R


Day 2 GIS, visualisation, modelling: recap

--

.pull-left[

Day 1: Foundations

09:30-11:00 Introduction to the course and software

11:15-12:30: R's spatial ecosystem

Lunch

13:30-15:00 The structure of vector geographic data in R and working with attribute data

15:15-16:30 Spatial data operations

]

--

.pull-right[

09:30-11:00 Reading and writing geographic data

11:15-12:30: Geometric operations

Lunch

13:30-15:00 Visualisation

15:15-16:30 Working on your own data

]

--

Updated challenges/examples: git.io/geocompr-2-day-course


Reading and writing geographic data


Geometric operations

library(osmdata)
cycleways = opq("leeds") %>% 
  add_osm_feature(key = "name", value = "Cycle Superhighway 1") %>% 
  osmdata_sf()
cycleway_line = cycleways$osm_lines
cycleway_buffer = cycleway_line %>% 
  st_transform(27700) %>% 
  st_buffer(500) %>% 
  st_transform(4326)

Geometric exercises


Visualisation


Working on your own data



geocompr/geocompkg documentation built on July 5, 2025, 2:35 a.m.