srtBayes: Bayesian Analysis of Simple Randomised Education Trials (SRT)...

View source: R/srtBayes.R

srtBayesR Documentation

Bayesian Analysis of Simple Randomised Education Trials (SRT) using Bayesian Linear Regression Model with Vague Priors.

Description

srtBayes performs Bayesian multilevel analysis of Simple Randomised Education Trials (SRT), utilising vague priors and JAGS language to fit the model. This can also be used with schools as fixed effects.

Usage

srtBayes(formula, intervention, nsim = 10000, data)

Arguments

formula

The model to be analysed is of the form y~x1+x2+.... Where y is the outcome variable and Xs are the independent variables.

intervention

A string variable specifying the "intervention variable" as appearing in the formula and the data. See example below.

nsim

number of MCMC iterations per chain. Default is 2000.

data

Data frame containing the data to be analysed.

Value

S3 object; a list consisting of

  • Beta: Estimates and credible intervals for the variables specified in the model. Use summary.eefAnalytics to get Rhat and effective sample size for each estimate.

  • ES: Conditional Hedges' g effect size and its 95% credible intervals.

  • sigma: Residual variance.

  • ProbES: A matrix of Bayesian posterior probabilities such that the observed effect size is greater than or equal to a pre-specified threshold(s).

  • Unconditional: A list of unconditional effect sizes, sigma2 and ProbES obtained based on residual variance from the unconditional model (model with only the intercept as a fixed effect).

Examples

if(interactive()){

data(mstData)

########################################################
## Bayesian analysis of simple randomised trials      ##
########################################################

output <- srtBayes(Posttest~ Intervention+Prettest,
		intervention="Intervention",nsim=10000,data=mstData)

### Fixed effects
beta <- output$Beta
beta

### Effect size
ES1 <- output$ES
ES1

## Covariance matrix
covParm <- output$covParm
covParm

### plot random effects for schools

plot(output)

### plot posterior probability of an effect size to be bigger than a pre-specified threshold

plot(output,group=1)

###########################################################################################
## Bayesian analysis of simple randomised trials using informative priors for treatment  ##
###########################################################################################

### define priors for explanatory variables

my_prior <- normal(location = c(0,6), scale = c(10,1))

### specify the priors for the conditional model only

output2 <- srtBayes(Posttest~ Prettest+Intervention,
                    intervention="Intervention",
                    nsim=2000,data=mstData,
                    condopt=list(prior=my_prior))

### Fixed effects
beta2 <- output2$Beta
beta2

### Effect size
ES2 <- output2$ES
ES2
}

germaine86/eefAnalytics documentation built on Oct. 12, 2024, 11:32 a.m.