| add_knots.bmop | Add a new knot to a bmop object |
| AIC.bmop | Akaike Information Criteria for bmop |
| as.bins | Bins grouping |
| as.function.bmop | Convert an bmop object to a function |
| BIC.bmop | Bayesian Information Criteria for bmop |
| bmop_fit | Estimation of bmop density or conditional density |
| bmop_fit.bins | Estimation of bmop density or conditional density |
| bmop_fit.data.frame | Estimation of bmop density or conditional density |
| bmop_fit.default | Estimation of bmop density or conditional density |
| bmop_fit.histogram | Estimation of bmop density or conditional density |
| bmopPar | Set Rbmop parameters |
| clean.bmop | Clean a bmop object |
| comparison_plot | Plot several bmops and true density |
| dim.bmop | Dimension of bmop |
| envelope_plot | Envelop of estimated bmop |
| evaluate.bmop | Evaluation of a bmop object |
| Examples_bmop | Examples of bmop density estimations |
| generate_knots | Generate sequence of knots for bmop objects |
| integrate.bmop | Integrate bmop object over the support |
| is.bmop | Check if an object's class is bmop |
| KL.bmop | Kullback-Leibler (KL) divergence between bmop and true... |
| logLik.bmop | Log-Likelihood of bmop object |
| lower.bmop | Lower Limit of bmop |
| marginalize.bmop | Marginalize a bmop |
| mean.bmop | Mean value for a bmop density |
| new_bmop | New bmop object |
| normalize.bmop | Normalize a bmop |
| plot.bmop | Plot of bmop object |
| points.bmop | Plot points from bmop |
| print.bmop | Print bmop objects |
| put_evidence.bmop | Put evidence on a conditional bmop |
| Rbmop | Rbmop: A package for handling and estimating densities and... |
| search_bmop | Greedy penalized log-likelihood search |
| squareError.bmop | Square Error between bmop and true density |
| summary.bmop | Summary of a bmop object |
| upper.bmop | Upper Limit of bmop |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.