B-spline MoPs densities and conditional densities

add_knots.bmop | Add a new knot to a bmop object |

AIC.bmop | Akaike Information Criteria for bmop |

as.bins | Bins grouping |

as.function.bmop | Convert an bmop object to a function |

BIC.bmop | Bayesian Information Criteria for bmop |

bmop_fit | Estimation of bmop density or conditional density |

bmop_fit.bins | Estimation of bmop density or conditional density |

bmop_fit.data.frame | Estimation of bmop density or conditional density |

bmop_fit.default | Estimation of bmop density or conditional density |

bmop_fit.histogram | Estimation of bmop density or conditional density |

bmopPar | Set Rbmop parameters |

clean.bmop | Clean a bmop object |

comparison_plot | Plot several bmops and true density |

dim.bmop | Dimension of bmop |

envelope_plot | Envelop of estimated bmop |

evaluate.bmop | Evaluation of a bmop object |

Examples_bmop | Examples of bmop density estimations |

generate_knots | Generate sequence of knots for bmop objects |

integrate.bmop | Integrate bmop object over the support |

is.bmop | Check if an object's class is bmop |

KL.bmop | Kullback-Leibler (KL) divergence between bmop and true... |

logLik.bmop | Log-Likelihood of bmop object |

lower.bmop | Lower Limit of bmop |

marginalize.bmop | Marginalize a bmop |

mean.bmop | Mean value for a bmop density |

new_bmop | New bmop object |

normalize.bmop | Normalize a bmop |

plot.bmop | Plot of bmop object |

points.bmop | Plot points from bmop |

print.bmop | Print bmop objects |

put_evidence.bmop | Put evidence on a conditional bmop |

Rbmop | Rbmop: A package for handling and estimating densities and... |

search_bmop | Greedy penalized log-likelihood search |

squareError.bmop | Square Error between bmop and true density |

summary.bmop | Summary of a bmop object |

upper.bmop | Upper Limit of bmop |

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.