cpss.lm | R Documentation |
Detecting changes in linear models
cpss.lm( formula, data = NULL, algorithm = "BS", dist_min = floor(log(n)), ncps_max = ceiling(n^0.4), pelt_pen_val = NULL, pelt_K = 0, wbs_nintervals = 500, criterion = "CV", times = 2 )
formula |
a |
data |
an optional data frame containing the variables in the model. |
algorithm |
a character string specifying the change-point searching algorithm, one of the following choices: "SN" (segment neighborhood), "BS" (binary segmentation), "WBS" (wild binary segmentation) and "PELT" (pruned exact linear time) algorithms. |
dist_min |
an integer specifying minimum searching distance (length of feasible segments). |
ncps_max |
an integer specifying an upper bound of the number of true change-points. |
pelt_pen_val |
a numeric vector specifying candidate values of the penalty only if |
pelt_K |
a numeric value for pruning adjustment only if |
wbs_nintervals |
an integer specifying the number of random intervals drawn only if |
criterion |
a character string specifying the model selection criterion, "CV" ("cross-validation") or "MS" ("multiple-splitting"). |
times |
an integer specifying how many times of sample-splitting should be performed; It should be 2 if |
cpss.lm
returns an object of an S4 class, called "cpss
", which collects data and information required for further change-point analyses and summaries. See cpss.custom
.
Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal Detection of Changepoints With a Linear Computational Cost. Journal of the American Statistical Association, 107(500):1590–1598.
Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6): 2243–2281.
cpss.glm
library("cpss") set.seed(666) n <- 400 tau <- c(80, 200, 300) tau_ext <- c(0, tau, n) be <- list(c(0, 1), c(1, 0.5), c(0, 1), c(-1, 0.5)) seg_len <- diff(c(0, tau, n)) x <- rnorm(n) mu <- lapply(seq(1, length(tau) + 1), function(k) { be[[k]][1] + be[[k]][2] * x[(tau_ext[k] + 1):tau_ext[k + 1]] }) mu <- do.call(c, mu) sig <- unlist(lapply(seq(1, length(tau) + 1), function(k) { rep(be[[k]][2], seg_len[k]) })) y <- rnorm(n, mu, sig) res <- cpss.lm( formula = y ~ x, algorithm = "BS", ncps_max = 10 ) summary(res) # 80 202 291 coef(res) # $coef # [,1] [,2] [,3] [,4] # [1,] -0.00188792 1.0457718 -0.03963209 -0.9444813 # [2,] 0.91061557 0.6291965 1.20694409 0.4410036 # # $sigma # [1] 0.8732233 0.4753216 0.9566516 0.4782329
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.