library(conos) library(tidyverse) devtools::load_all('/home/larsc/SecretUtils') library(cowplot) library(splatter) devtools::load_all('/home/viktor_petukhov/Copenhagen/NeuronalMaturation') devtools::load_all('/home/viktor_petukhov/SmallProjects/scConditionDifference') params <- readRDS('/home/larsc/data/splatter_lamp5_params.rds')
How to generate params
#epilepsy_con <- readRDS(file.path('/home/larsc/data/10x_preproced_graphed.rds')) #epilepsy_annot <- readRDS(file.path('/home/demharters/R/projects/UPF9_14_17_19_22_23_24_32_33/metadata_10x_final.rds')) #epilepsy_annot$cellid <- rownames(epilepsy_annot) #raw_cm <- RbindRaw(epilepsy_con) #sub_matrices <- GetSubMatrices(epilepsy_annot$subtype, epilepsy_annot$cellid, epilepsy_annot$condition, raw_cm, #colnames(raw_cm), avg=F) #testmat <- sub_matrices$healthy$L2_Lamp5 %>% as.matrix %>% removezerocols %>% Matrix::t() #params <- splatEstimate(testmat)
Initiate variables for the simulations
group_prob <- rep(1/6, 6) de_prob <- c(0.0, 0.0, 0.2, 0.3, 0.4, 0.5) ncellvec <- c(30, 100, 200, 500, 1000) ngenevec <- c(100, 1000, 5000, 10000, 20000) de_prob <- c(0.0, 0.0, 0.2, 0.3, 0.4, 0.5) liblocvec <- c(6.5, 7, 7.5, 8, 8.5) seeds <- c(22071, 666, 9001) leiden_resolutions <- c(1, 1.5, 2, 2.5) distances <- list('paga', 'correlation.distance', 'jensen_shannon', 'CMD', 'euclidean', 'knncor.z', 'knncor.z.med', 'entropy')
Create the data (this takes a while, so we make pre-make some sims and save them)
#cell_sim <- MakeSimsAllSeeds(seeds, ncellvec, de_prob, 'ncell', make.p2 = T, n.cl.tsne=30, n.cl.sim=3) #gene_sim <- MakeSimsAllSeeds(seeds, ngenevec, de_prob, 'ngenes', make.p2 = T, n.cl.tsne=30, n.cl.sim=3) #libloc_sim <- MakeSimsAllSeeds(seeds, liblocvec, de_prob, 'lib.loc', make.p2 = T, n.cl.tsne=30, n.cl.sim=3) # save these for convnience #saveRDS(cell_sim, '/home/larsc/data/splatter_data/final_script_data/cell_sim_final.rds') #saveRDS(gene_sim, '/home/larsc/data/splatter_data/final_script_data/gene_sim_final.rds') #saveRDS(libloc_sim, '/home/larsc/data/splatter_data/final_script_data/libloc_sim_final.rds') cell_sim <- readRDS('/home/larsc/data/splatter_data/final_script_data/cell_sim_final.rds') gene_sim <- readRDS('/home/larsc/data/splatter_data/final_script_data/gene_sim_final.rds') libloc_sim <- readRDS('/home/larsc/data/splatter_data/final_script_data/libloc_sim_final.rds')
Create data frames for the distances (takes a while, especially the entropy, so we pre-make it)
#dfs_per_distance <- AllDistsDfs(list(cell_sim, gene_sim, libloc_sim), list('ncell', 'ngenes', 'lib.loc'), #distances, avg.meds=T, leiden.resolutions=leiden_resolutions) #saveRDS(dfs_per_distance, '/home/larsc/data/splatter_data/final_script_data/dfs_per_distance.rds') dfs_per_distance <- readRDS('/home/larsc/data/splatter_data/final_script_data/dfs_per_distance.rds')
Create plots and make a grid
all_plots <- doPlotsPerFactor(dfs_per_distance, jitter=T, geom.smooth=T) grid_all <- CreateGrid(all_plots, leiden_resolutions) pdf(file='/home/larsc/grid_of_grids.pdf',width=15,height=40) grid_all dev.off()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.