dot-get_prior_parameters: Get priors for Bayesian DCA

.get_prior_parametersR Documentation

Get priors for Bayesian DCA

Description

Get priors for Bayesian DCA

Usage

.get_prior_parameters(
  thresholds,
  threshold_varying_prior = FALSE,
  n_strategies = NULL,
  prior_p = NULL,
  prior_se = NULL,
  prior_sp = NULL,
  ignorance_region_cutpoints = c(0.25, 0.75) * max(thresholds),
  min_sens_prior_mean = 0.01,
  max_sens_prior_mean = 0.99,
  max_sens_prior_sample_size = 5,
  ignorance_region_mean = 0.5,
  ignorance_region_sample_size = 2,
  prev_prior_mean = 0.5,
  prev_prior_sample_size = 2
)

Arguments

thresholds

Vector of decision thresholds.

shift

Scalar controlling height of prior Specificity curve. Only used if constant=FALSE.

slope

Scalar controlling shape of prior Specificity curve. Only used if constant=FALSE.

min_mean_se, min_mean_sp, max_mean_se, max_mean_se

Minimum

prior_sample_size

Prior sample size of strength.

min_prior_sample_size

Minimum prior sample size or strength.

max_prior_sample_size

Maximum prior sample size or strength.

slope_prior_sample_size

Rate of change in prior sample size or strength. and maximum prior mean for sensitivity (se) and specificity (sp).


giulianonetto/bayesdca documentation built on Aug. 31, 2023, 11:07 a.m.