transform_data: transform_data

View source: R/transform_data.R

transform_dataR Documentation

transform_data

Description

This functions makes quantile-quanitle (qq) plots of i) raw residual values ii) log-transformed residual values iii) raw residual values after removing outliers, and iv) log-transformed residual values after removing outliers. To detect outliers, the function uses Rosner's test.

Usage

transform_data(
  data,
  condition_column,
  experimental_columns,
  response_column,
  condition_is_categorical,
  repeatable_columns = NA,
  response_is_categorical = FALSE,
  alpha = 0.05
)

Arguments

data

Input data

condition_column

Name of the condition variable (ex variable with values such as control/case). The input file has to have a corresponding column name

experimental_columns

Name of the variable related to experimental design such as "experiment", "plate", and "cell_line".

response_column

Name of the variable observed by performing the experiment. ex) intensity.

condition_is_categorical

Specify whether the condition variable is categorical. TRUE: Categorical, FALSE: Continuous.

repeatable_columns

Name of experimental variables that may appear repeatedly with the same ID. For example, cell_line C1 may appear in multiple experiments, but plate P1 cannot appear in more than one experiment

response_is_categorical

Default: the observed variable is continuous Categorical response variable will be implemented in the future. TRUE: Categorical , FALSE: Continuous (default).

alpha

numeric scalar between 0 and 1 indicating the Type I error associated with the test of outliers

Value

Quantile-quanitle (qq) plots of i) raw residual values ii) log-transformed residual values iii) raw residual values after removing outliers, and iv) log-transformed residual values

Examples

transform_data(data,"classif",c("experiment","line"),"feature1","TRUE")

gladstone-institutes/CalcPower documentation built on Jan. 3, 2023, 11:27 a.m.