# DEBUG # targets::tar_load_globals() # DF_clean = read_rds(here::here("_targets/objects/DF_clean")) # DF_raw = read_rds(here::here("_targets/objects/DF_raw")) # params = list( # pid_report = 0, # last_task = "Goodbye" # ) knitr::opts_chunk$set(echo = TRUE) targets::tar_load(DF_clean) targets::tar_load(DF_raw) DF = DF_clean
# Plot created in report_PROGRESS.Rmd # plot_form_progress = show_progress_pid(pid = params$pid_report, files_vector = DF_clean$filename, last_task = params$last_task, goal = 500)$PLOT_progress # # ggsave(here::here("outputs/plots/plot_form_progress.png"), plot_form_progress, width = 15, height = 9, bg = "white")
number_participants = DF_raw %>% distinct(id) %>% nrow() number_tasks = DF_raw %>% distinct(experiment) %>% nrow() text_participants = DF_raw %>% count(id, experiment) %>% count(id, name = "tasks") %>% count(tasks, name = "people") %>% arrange(desc(tasks))
We had a total of r number_participants
participants completing up to r number_tasks
different tasks.
DT::datatable(text_participants, width = "50%", rownames = FALSE, options = list(dom = 't', pageLength = 20))
all_tasks = DF_raw %>% distinct(experiment) %>% pull(experiment) summary_table = DF_raw %>% select(id, experiment, rt) %>% mutate(rt = as.numeric(rt)) %>% group_by(id, experiment) %>% summarise(TIME = round(sum(rt, na.rm = TRUE)/60000, 2), # TIME = round(max(time_elapsed)/60000, 2), # time_elapsed is cumulative! N = dplyr::n(), .groups = "keep") %>% group_by(id) %>% summarise(TIME = sum(TIME), N = dplyr::n(), tasks = paste(experiment, collapse = ", "), .groups = "keep") %>% mutate(missing = paste(all_tasks[!all_tasks %in% (strsplit(tasks, split = ", ") %>% unlist())], collapse = ", ")) DT::datatable(summary_table, filter = 'top', options = list(dom = 'ltip', pageLength = 10))
# Using time_elapsed overestimates time by a lot. NOT sure why # summary_table2 = # DF_raw %>% # group_by(id, experiment) %>% # summarise( # n_participants = n_distinct(id), # time = max(time_elapsed) / 60000, # .groups = "drop" # ) %>% #View # # group_by(experiment) %>% # summarise( # n_participants = dplyr::n(), # mean_time = round(mean(time), 1), # time_elapsed_min = round(min(time), 1), # time_elapsed_max = round(max(time), 1), # .groups = "keep" # ) summary_table2 = DF_raw %>% select(id, experiment, rt) %>% mutate(rt = as.numeric(rt)) %>% group_by(id, experiment) %>% summarise(TIME = round(sum(rt, na.rm = TRUE)/60000, 2), # TIME = round(max(time_elapsed)/60000, 2), # time_elapsed is cumulative! N = dplyr::n(), .groups = "drop") %>% group_by(experiment) %>% summarise( n_participants = dplyr::n(), mean_time = round(mean(TIME), 1), time_elapsed_min = round(min(TIME), 1), time_elapsed_max = round(max(TIME), 1), .groups = "keep" ) DT::datatable(summary_table2, filter = 'top', options = list(dom = 'ltip', pageLength = 10))
# Using time_elapsed overestimates time by a lot. NOT sure why # summary_table3 = # DF_raw %>% # group_by(id, experiment) %>% # summarise( # # n_participants = n_distinct(id), # time = round(max(time_elapsed) / 60000, 2), # .groups = "drop" # ) summary_table3 = DF_raw %>% select(id, experiment, rt) %>% mutate(rt = as.numeric(rt)) %>% group_by(id, experiment) %>% summarise(TIME = round(sum(rt, na.rm = TRUE)/60000, 2), # TIME = round(max(time_elapsed)/60000, 2), # time_elapsed is cumulative! items = dplyr::n(), .groups = "drop") DT::datatable(summary_table3, filter = 'top', options = list(dom = 'ltip', pageLength = 10))
summary_position = DF_raw %>% distinct(id, experiment, datetime) %>% group_by(id) %>% arrange(id, (datetime)) %>% mutate(Order = row_number()) %>% select(-datetime) %>% group_by(experiment) %>% summarise(MEAN_Position = round(mean(Order), 1), SD_Position = round(sd(Order), 1), MIN_Position = min(Order), MAX_Position = max(Order), .groups = "drop") %>% arrange(MEAN_Position, experiment) DT::datatable(summary_position, filter = 'top', options = list(dom = 'ltip', pageLength = 10))
# Alternative trialid for each scale trialid_table = DF %>% filter(trial_type != "fullscreen") %>% select(experiment, trial_type, trialid, response) %>% group_by(experiment) %>% distinct(trialid) %>% count(experiment, name = "number_items") DT::datatable(trialid_table, filter = 'top', options = list(dom = 'ltip', pageLength = 15))
# trialid and question_text for each experiment trialid_detail_table = DF %>% select(experiment, trialid, stimulus) %>% group_by(experiment) %>% distinct(trialid, stimulus) DT::datatable(trialid_detail_table, filter = 'top', options = list(dom = 'ltip', pageLength = 15))
# All tasks tasks = list.files(here::here("R_tasks"), pattern = "\\.R", full.names = TRUE) # Extract information for dimensions... DF_dims = 1:length(tasks) %>% map_df(~ { # cat(.x, "\n") create_codebook(tasks[.x]) } ) DT::datatable(DF_dims, filter = 'top', options = list(dom = 'ltip', pageLength = 15))
# Alternatives responses for each scale responses_table = DF |> # distinct(trial_type) select(experiment, trial_type, trialid, response) |> # filter(trial_type %in% c("survey-multi-choice-vertical", "survey-multi-choice-horizontal", "likert", "html-slider-response")) |> group_by(experiment) |> distinct(trialid, response) DT::datatable(responses_table, filter = 'top', options = list(dom = 'ltip', pageLength = 15))
# DF_responses = # DF %>% # count(trialid, experiment, responses) %>% # group_by(experiment, trialid) %>% # summarise(N = dplyr::n(), # Responses = paste(responses, collapse = ", "), # .groups = "drop") %>% # group_by(experiment, Responses) %>% # summarise(N = dplyr::n(), # trialid = paste(trialid, collapse = ", "), # .groups = "drop") %>% # select(experiment, trialid, Responses, N) # # # DT::datatable(DF_responses, # filter = 'top', # options = list(dom = 'ltip', # pageLength = 15))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.