#' Linear Regression
#'
#' @return model
#' @export
ml_lm <- function(){
parsnip::linear_reg(mode = "regression") |>
parsnip::set_engine("lm")
}
#' GLM (Lasso / Ridge ) Regression
#'
#' @return model
#' @export
ml_glmnet <- function(){
parsnip::linear_reg(
mode = "regression",
penalty = tune::tune(),
mixture = tune::tune()
) |>
parsnip::set_engine("glmnet")
}
#' Stan Regression
#'
#' @return model
#' @export
ml_stan <- function(){
parsnip::linear_reg(mode = "regression") |>
parsnip::set_engine("stan")
}
#' Random Forest
#'
#' @return model
#' @export
ml_rf <- function(){
parsnip::rand_forest(
mode = "regression",
trees = 100
# mtry = tune::tune()
) |>
parsnip::set_engine("ranger",
importance = "permutation")
}
#' Distributed Random Forest
#'
#' @return model
#' @export
ml_drf <- function(){
parsnip::rand_forest(
mode = "regression"
# trees = 100
# mtry = tune::tune()
) |>
parsnip::set_engine("h2o",
categorical_encoding = "SortByResponse")
}
#' Decision Tree
#'
#' @return model
#' @export
ml_dt <- function(){
parsnip::decision_tree(
mode = "regression"
) |>
parsnip::set_engine("rpart")
}
#' LightGBM
#'
#' @return model
#' @export
ml_lgbm <- function(){
parsnip::boost_tree(
mode = "regression",
tree_depth = tune::tune(),
learn_rate = tune::tune(),
loss_reduction = tune::tune(),
min_n = tune::tune(),
sample_size = tune::tune(),
trees = tune::tune()
# mtry = tune::tune()
) |>
parsnip::set_engine("lightgbm")
}
#' catBoost
#'
#' @return model
#' @export
ml_catboost <- function(){
parsnip::boost_tree(
mode = "regression"
# mtry = tune::tune()
) |>
parsnip::set_engine("catboost")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.