hsarML: Estimation of HSAR models by Quasi-Maximum Likelihood

View source: R/hsarML.R

hsarMLR Documentation

Estimation of HSAR models by Quasi-Maximum Likelihood

Description

Estimation of HSAR models by Quasi-Maximum Likelihood

Usage

hsarML(
  formula,
  data,
  listw = NULL,
  index = NULL,
  gradient = TRUE,
  average = FALSE,
  init.values = NULL,
  print.init = FALSE,
  otype = c("maxLik", "optim"),
  ...
)

## S3 method for class 'hsarML'
coef(object, ...)

## S3 method for class 'hsarML'
summary(object, MG = TRUE, ...)

## S3 method for class 'summary.hsarML'
print(x, digits = max(5, getOption("digits") - 3), ...)

Arguments

formula

a symbolic description of the model.

data

the data of class pdata.frame.

listw

object. An object of class listw, matrix, or Matrix.

index

index.

gradient

logical. Only for testing procedures. Should the analytic gradient be used in the ML optimization procedure? TRUE as default. If FALSE, then the numerical gradient is used.

average

logical. Should the sample log-likelihood function be divided by N?

init.values

if not NULL, the user must provide a vector of initial parameters for the optimization procedure.

print.init

logical. If TRUE the initial parameters used in the optimization of the first step are printed.

otype

string. A string indicating whether package maxLik or optim is used in for the numerical optimization.

...

additional arguments passed to maxLik

MG

logical. If TRUE, the Mean Group estimator is returned

x, object

an object of class hsarML

digits

the number of digits


gpiras/hspm documentation built on Nov. 10, 2023, 5:37 p.m.