getNPPIblksizesQR | R Documentation |
Chooses block sizes for MBB, ETBB, SMBB, and SETBB via the NPPI for quantile regression
getNPPIblksizesQR(Y, X, tau, min.in.JAB = 100)
Y |
the vector of response values. |
X |
the design matrix (including a column of ones for the intercept). |
tau |
the quantile of interest. |
min.in.JAB |
the minimum number of Monte-Carlos draws desired in each jackknife draw |
This function is based on the nonparametric plug-in (NPPI) method discussed in Lahiri (2003), which makes use of the jackknife-after-bootstrap (JAB).
Returns a list of the NPPI-selected block sizes for the MBB, SMBB, ETBB, and SETBB.
Gregory, K. B., Lahiri, S. N., & Nordman, D. J. (2018). A smooth block bootstrap for quantile regression with time series. The Annals of Statistics, 46(3), 1138-1166.
Lahiri, S. N. (2003). Resampling Methods for Dependent Data. Springer, New York.
# generate some data and use NPPI to choose block sizes for MBB, SMBB, ETBB, and SETBB. n <- 50 X1 <- arima.sim(model=list(ar=c(.7,.1)),n) X2 <- arima.sim(model=list(ar=c(.2,.1)),n) e <- arima.sim(model=list(ar=c(.7,.1)),n) Y <- X1 + e X <- cbind(rep(1,n),X1,X2) blksize.out <- getNPPIblksizesQR(Y,X,tau=.5) blksize.out
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.