Hierarchical linear regression in general marginal formulation

A hierarchical, Bayesian linear regression model using the iris data, with random intercepts and slopes for each of the three species. This time we try to set up the marginal model, i.e. when we integrate the conditional density.

int  <- variable()
coef <- normal(0, 5)
sd   <- cauchy(0, 3, truncation = c(0, Inf))

n_species  <- length(unique(iris$Species))
species_id <- as.numeric(iris$Species)

Z <- model.matrix(~ Species + Sepal.Length * Species - 1, data = iris)
G  <- zeros(n_species * 2, n_species * 2)

for (s in unique(species_id)) {
  G[c(s, s + n_species), c(s, s + n_species)] <- diag(2)
}

mu <- int + coef * iris$Sepal.Width
V <- zeros(nrow(iris), nrow(iris))
diag(V) <- sd

Z <- as_data(Z)
V <- V + Z %*% G %*% t(Z)

sep <- t(iris$Sepal.Width)
distribution(sep) <- multivariate_normal(t(mu), V)


greta-dev/greta documentation built on Dec. 21, 2024, 5:03 a.m.