A hierarchical, Bayesian linear regression model using the iris data, with random intercepts and slopes for each of the three species. This time we try to set up the marginal model, i.e. when we integrate the conditional density.
int <- variable() coef <- normal(0, 5) sd <- cauchy(0, 3, truncation = c(0, Inf)) n_species <- length(unique(iris$Species)) species_id <- as.numeric(iris$Species) Z <- model.matrix(~ Species + Sepal.Length * Species - 1, data = iris) G <- zeros(n_species * 2, n_species * 2) for (s in unique(species_id)) { G[c(s, s + n_species), c(s, s + n_species)] <- diag(2) } mu <- int + coef * iris$Sepal.Width V <- zeros(nrow(iris), nrow(iris)) diag(V) <- sd Z <- as_data(Z) V <- V + Z %*% G %*% t(Z) sep <- t(iris$Sepal.Width) distribution(sep) <- multivariate_normal(t(mu), V)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.