The regularized ('Finnish') horseshoe (doi.org/10.1214/17-EJS1337SI) remedies a problem of the original horseshoe: large, unregularized values for the coefficients. This is especially problematic in scenarios where the parameters are only weakly identified by the data, as in logistic regression with perfectly seperable data.
regularized_horseshoe <- function (tau = 1, c = 1, dim = NULL) { stopifnot(c > 0) lambda <- cauchy(0, 1, truncation = c(0, Inf), dim = dim) lambda_tilde <- (c^2 * lambda^2) / (c^2 + tau^2 * lambda^2) sd <- tau ^ 2 * lambda_tilde ^ 2 normal(0, sd, dim = dim) } # variables & priors int <- variable() sd <- inverse_gamma(1, 1) coef <- regularized_horseshoe() # linear predictor mu <- int + coef * attitude$complaints # observation model distribution(attitude$rating) <- normal(mu, sd)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.