The bdsreader
package is a lightweight package that
The bdsreader
translates child data (incoming via an API request) into
a data object useful for R
processing. The package is part of Joint
Automatic Measurement and Evaluation System (JAMES) developed by the
Netherlands Organisation for Applied Scientific Research TNO.
Install the development version bdsreader
by
install.packages("remotes")
remotes::install_github("growthcharts/bdsreader")
There is no CRAN release.
The following commands illustrate the main use of bdsreader
.
library(bdsreader)
fn <- system.file("examples", "maria.json", package = "bdsreader")
tgt <- read_bds(fn)
timedata(tgt)
#> # A tibble: 13 × 8
#> age xname yname zname zref x y z
#> <dbl> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 0.0849 age hgt hgt_z nl_2012_hgt_female_27 0.0849 38 -0.158
#> 2 0.167 age hgt hgt_z nl_2012_hgt_female_27 0.167 43.5 0.047
#> 3 0 age wgt wgt_z nl_2012_wgt_female_27 0 0.99 0.19
#> 4 0.0849 age wgt wgt_z nl_2012_wgt_female_27 0.0849 1.25 -0.203
#> 5 0.167 age wgt wgt_z nl_2012_wgt_female_27 0.167 2.1 0.015
#> 6 0.0849 age hdc hdc_z nl_2012_hdc_female_27 0.0849 27 -0.709
#> 7 0.167 age hdc hdc_z nl_2012_hdc_female_27 0.167 30.5 -0.913
#> 8 0 age bmi bmi_z nl_1997_bmi_female_nl 0 NA NA
#> 9 0.0849 age bmi bmi_z nl_1997_bmi_female_nl 0.0849 8.66 -5.72
#> 10 0.167 age bmi bmi_z nl_1997_bmi_female_nl 0.167 11.1 -3.77
#> 11 0 hgt wfh wfh_z nl_2012_wfh_female_ NA 0.99 NA
#> 12 0.0849 hgt wfh wfh_z nl_2012_wfh_female_ 38 1.25 -0.001
#> 13 0.167 hgt wfh wfh_z nl_2012_wfh_female_ 43.5 2.1 0.326
Column age
holds decimal age for the measurement. Every row contains a
measurement yname
, the conditioning variable xname
and the Z-score
zname
. The column named zref
holds the name of the growth reference
(as defined in the nlreference
package) used to calculate the Z-score.
Columns y
, x
and z
store their values, respectively.
The persondata()
function extracts the person-level information:
persondata(tgt)
#> # A tibble: 1 × 22
#> id name dob dobm dobf src dnr sex gad ga
#> <int> <chr> <date> <date> <date> <chr> <chr> <chr> <dbl> <dbl>
#> 1 -1 Maria 2018-10-11 1990-12-02 1995-07-04 1234 <NA> female 189 27
#> # ℹ 12 more variables: smo <dbl>, bw <dbl>, hgtm <dbl>, hgtf <dbl>, agem <dbl>,
#> # etn <chr>, pc4 <chr>, blbf <int>, blbm <int>, eduf <int>, edum <int>,
#> # par <int>
The result of read_bds()
feeds into further data processing in R
.
The example file maria.json
contains Maria’s data coded in JSON format
according to BDS-schema file
bds_v3.0.json.
Here’s the contents of the file with the child data:
{
"Format": "3.0",
"organisationCode": 1234,
"reference": "Maria",
"clientDetails": [
{
"bdsNumber": 19,
"value": "2"
},
{
"bdsNumber": 20,
"value": "20181011"
},
{
"bdsNumber": 82,
"value": 189
},
{
"bdsNumber": 91,
"value": "1"
},
{
"bdsNumber": 110,
"value": 990
},
{
"bdsNumber": 238,
"value": 1670
},
{
"bdsNumber": 240,
"value": 1900
}
],
"clientMeasurements": [
{
"bdsNumber": 235,
"values": [
{
"date": "20181111",
"value": 380
},
{
"date": "20181211",
"value": 435
}
]
},
{
"bdsNumber": 245,
"values": [
{
"date": "20181011",
"value": 990
},
{
"date": "20181111",
"value": 1250
},
{
"date": "20181211",
"value": 2100
}
]
},
{
"bdsNumber": 252,
"values": [
{
"date": "20181111",
"value": 270
},
{
"date": "20181211",
"value": 305
}
]
}
],
"nestedDetails": [
{
"nestingBdsNumber": 62,
"nestingCode": "01",
"clientDetails": [
{
"bdsNumber": 63,
"value": "19950704"
}
]
},
{
"nestingBdsNumber": 62,
"nestingCode": "02",
"clientDetails": [
{
"bdsNumber": 63,
"value": "19901202"
}
]
}
]
}
JSON is a lightweight format to exchange data between electronic
systems. Field "bdsNumber"
refers to the numbers defined in the
Basisdataset JGZ. Field "value"
contains the value for the
"bdsNumber"
. See Basisdataset
JGZ
4.0.1 for more details on "bdsNumber"
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.