knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" ) library(changepoint.cov)
The goal of changepoint.cov is to provide methods for detecting covariance or subspace changepoints in multivariate time series.
You can install the development version from GitHub with:
# install.packages("devtools") devtools::install_github("grundy95/changepoint.cov")
These basic examples show how to use the 2 main functions: cptCov
for detecting changes in covariance and cptSubspace
for detecting changes in subspace.
cptCov
For detecting covariance changepoints in high-dimensional independent time series, we recommend using method='Ratio'
.
set.seed(1) data <- wishartDataGeneration(n=200,p=30,tau=100)$data ansRatio <- cptCov(X=data, method='Ratio') summary(ansRatio) plot(ansRatio)
For detecting covariance changes in low-dimensional, potentially dependent time series we recommend using method='CUSUM'
.
set.seed(1) data <- wishartDataGeneration(n=200,p=3,tau=c(50,150))$data ansCUSUM <- cptCov(X=data, method='CUSUM', numCpts='BinSeg', threshold='Manual', thresholdValue=7) show(ansCUSUM) cptsSig(ansCUSUM) covEst(ansCUSUM)
cptSubspace
For detecting subspace changepoints in high-dimensional data using the cptSubspace
function.
set.seed(1) data <- subspaceDataGeneration(n=100,p=20,subspaceDim=5,tau=50,changeSize=0.5*sqrt(5))$data ansSubspace <- cptSubspace(X=data, subspaceDim=5, nperm=100) summary(ansSubspace) subspaceEst(ansSubspace)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.